
Economic Growth and the Evolution of Comparative Advantage in

an Occupation-Based Network of Industries∗

Will Johnson†

July 24, 2018

Abstract

Recent evidence suggests significant changes over time in the pattern of compara-
tive advantage across countries and industries. What drives such dynamics remains an
open question. A mechanism suggested by theoretical literature, but not yet brought
to bear on this evidence, is learning-by-doing. In this paper I develop a quantitative
model of trade and growth with the goal of characterizing the relationship between
learning-by-doing and the dynamics of comparative advantage. The model features
an occupational dimension to learning, which endogenously generates a particular
network structure of inter-industry learning diffusion, based on occupational similar-
ity. The model predicts that countries with a comparative advantage in industries
more central in this network will grow more in the aggregate. I use the model-implied
dynamics of comparative advantage to quantitatively discipline the amount of occupa-
tional learning and the extent to which learning diffuses across industries. Compared
to intra-industry learning, I find that cross-industry learning diffusion explains at
least four times as much of the dynamics of comparative advantage, as well as forty
percent of an industry’s contribution to aggregate growth.
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1 Introduction

The principle of comparative advantage is two centuries old, but only recently have
Ricardian models of trade been developed that are capable of guiding empirical estimation
of the pattern of comparative advantage and how it changes over time.1 Recent contribu-
tions in this literature have shown that there are in fact significant changes in comparative
advantage over time, and in particular, a country’s level of comparative advantage in an
industry has a significant effect on future growth of that country’s comparative advantage
in that industry. What drives these dynamics is an open question.2 A leading theory,
heavily emphasized in prior theoretical literature but not yet brought to bear on these new
findings, is the theory of learning-by-doing − that countries get better over time at what
they already produce.3

In this paper I develop a tractable model of trade and growth that allows me to an-
alytically and quantitatively characterize the relationship between learning-by-doing and
the evolution of comparative advantage. Intuitively, the essence of learning-by-doing is
that the amount one learns something (and hence the amount one gets relatively better
or worse at it, i.e., the increase or decrease in one’s comparative advantage in it) depends
on how much one does it, and how much one does something depends, in equilibrium, on
how much of a comparative advantage one has in it in the first place. The model allows
for not only intra-industry learning, but also diffusion of learning across industries. The
idea captured by the model is that the amount of learning diffusion between two industries
is higher when the two industries are more similar to each other, in the tasks and skills
needed to produce in those industries.

I operationalize this idea by focusing on one particular, easily quantifiable dimension of
similarity in skills and tasks, namely, the occupational dimension. The source of growth in
the model is occupation-specific learning-by-doing, which partially diffuses across workers
in an occupation working in different industries. For example, since the automobile and
airplane manufacturing industries employ more engineers than economists, but vice versa
for the finance industry, then extra production of automobiles − and the resulting large
increase in learning-by-doing among engineers, but smaller increase in learning-by-doing
among economists − lowers future costs of production in the airplane manufacturing indus-
try more than the finance industry. This is captured in the model through a parsimonious
two-parameter formulation, with one parameter governing the overall amount of learning,
and the other parameter governing the extent to which this learning diffuses across indus-
tries. These parameters, in combination with the intensity with which each industry uses
each occupation, govern the extent to which learning in each particular industry diffuses
into each other industry.

1Eaton and Kortum (2012) provide a survey of this literature.
2See Levchenko and Zhang (2016) and Hanson, Lind, and Muendler (2016). Quoting from Levchenko

and Zhang (2016), “A theoretical and quantitative framework with endogenous sectoral productivity that can
be used for understanding the empirical patterns uncovered here has not yet been developed, and remains a
potentially fruitful direction for future research.”

3See Acemoglu (2008) for a survey of the theoretical literature on learning-by-doing.
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The cross-sectional trade structure of the model follows Costinot, Donaldson, and Ko-
munjer (2012), a multi-industry extension of the multi-country model of Eaton and Kortum
(2002). This structure overcomes a crucial limitation of previous Ricardian models of trade,
by allowing for a country’s productivity in an industry to be characterized not just by a
single number but by an entire distribution, with the mean of this distribution varying at
the country-industry level. Hence, the model-implied pattern of comparative advantage
across countries and industries is not − as in a classic Ricardian model − simply a specifi-
cation of which country has a comparative advantage in which industry, but also how much
of a comparative advantage each country has in each industry. This allows one to examine
gradual changes over time in the pattern of comparative advantage.

Given this structure, I analytically derive the particular evolution of comparative ad-
vantage implied by learning-by-doing. In the case of purely intra-industry learning, this
evolution takes a simple form: the change over time in a country’s comparative advantage in
an industry is only a function of its current level of comparative advantage in that industry
itself. When learning has an occupational dimension, growth in a country’s comparative
advantage in industry i is a function of its level of employment of each occupation, which
in equilibrium is a function of the country’s current level of comparative advantage not
only in industry i but also each other industry h, to the extent that industry h uses the
same occupations as i.

The dynamics of comparative advantage are examined empirically using data on bi-
lateral, industry-specific trade flows. In line with previous literature, I find a significant
association between a country’s future growth in comparative advantage in an industry
and its level of comparative advantage in that industry itself. In addition, I provide a
novel empirical finding: a country’s growth in comparative advantage in an industry is
positively correlated with its initial level of comparative advantage in occupationally sim-
ilar industries, holding fixed the country’s initial comparative advantage in the industry
itself. Occupational similarity is measured using US data on the relative intensities with
which each industry employs each occupation. This finding is in line with the mechanism
of inter-industry occupational learning diffusion highlighted by the theory.

I then take a more structural approach, using the observed dynamics in comparative
advantage, in combination with the structure of the model, to back out the model-implied
amount of occupational learning and the extent to which it spills over across industries.
I find that a one percentage point increase in the share of a country’s labor force in an
occupation is associated with 10-13% higher growth in productivity in that occupation in
that country from one decade to the next, with at least 70% of this higher occupational
productivity diffusing across industries. Compared to intra-industry learning, I find that
cross-industry learning diffusion explains at least four times as much of the observed changes
over time in comparative advantage.

Occupational learning has important implications not only for the dynamics of com-
parative advantage, but also for aggregate growth. In particular, my model endogenously
generates a particular network structure of inter-industry learning spillovers, as a function
of occupational similarity across industries. The model predicts that countries with com-
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parative advantages in industries that are more central in this network will grow more
in the aggregate. According to the calibrated model, on average, 38% of an industry’s
contribution to aggregate growth is through the inter-industry learning spillovers that it
generates.

In sum, this paper shows that a significant fraction of the observed changes over time
in the pattern of comparative advantage across countries and industries can be rationalized
by occupational learning-by-doing, and that this has important implications for aggregate
growth. The paper does this by exploiting a particularly salient implication of learning-by-
doing, namely, a specific relationship between the cross-sectional pattern of comparative
advantage at a given point in time, and changes in comparative advantage from that period
to the next. It is worth noting, however, that learning-by-doing is not the only mechanism
that can generate such a relationship. For example, dynamic occupational economies of
scale on the firms’ side− i.e., when a larger number of people are employed in an occupation,
employers better learn over time how to efficiently hire and make use of this occupation
− can result in a similar relationship. This paper makes no claim of specifically isolating
the particular mechanism of workers learning over time in their occupation. But given the
heavy emphasis that learning-by-doing has received in prior literature, it is used to guide
our thinking throughout this paper.

This paper contributes to several strands of literature. The mechanism underlying the
model is related to the spatial economics literature that finds that occupational similarity
plays a significant role in explaining the geographic co-agglomeration of industries. This
was first explored in a static setting by Ellison, Glaeser, and Kerr (2010), using cross-
sectional data from the US at the metropolitan, county, and state levels. Hanlon and
Miscio (2016) examine the dynamics of these industrial co-agglomeration patterns using
city-level panel data from the UK. These papers focus on estimating the reduced-form effect
of occupational similarity on co-agglomeration across pairs of industries. In this paper I
develop a model of economic growth that offers a theoretical rationale for why occupational
similarity is an important channel through which growth in one industry spurs growth in
another. The model allows me to expand on previous contributions by examining not just
the effects of growth in one industry on another industry, but the equilibrium effects on
aggregate growth, in both a closed and an open economy.

At the heart of my model is the notion of economic growth through learning-by-doing,
which dates back to Arrow (1962). The first to analyze this within a multi-industry frame-
work were Clemhout and Wan (1970) and Bardhan (1971), who showed that if certain
industries exhibit more learning-by-doing than others, and if learning is external to indi-
vidual firms, then this gives theoretical (although not necessarily practical) justification
for subsidizing the industries with more learning. Lucas (1988), Young (1991), Matsuyama
(1992), and Galor and Mountford (2008) theoretically show that these considerations are
further amplified by international trade: if certain countries have a comparative advantage
in high-growth industries (i.e., industries with large learning-by-doing externalities) while
other countries have a comparative advantage in low-growth industries, then the dynamic
gains from trade will be higher for the former countries than for the latter countries. I draw
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on this literature to inform the choice of functional form for the learning-by-doing function.
To the best of my knowledge, I am the first to analyze occupation-specific learning-by-doing
and its implications for cross-industry learning spillovers.

The open-economy version of my model draws from the recent literature on quantita-
tive, multi-country models of Ricardian trade. In addition to Costinot, Donaldson, and
Komunjer (2012), my paper is closely related to Levchenko and Zhang (2016) and Hanson,
Lind, and Muendler (2016) (henceforth “L&Z” and “HLM,” respectively), both of whom
examine the dynamics of country-industry-level comparative advantage. In particular, both
studies find a negative effect of a country’s initial level of comparative advantage in an in-
dustry on that country’s subsequent growth in comparative advantage in that industry.
My results are in line with theirs, despite various differences in the data and methodology,
which suggests the finding is quite robust. L&Z informally argue (but do not formally
demonstrate) that their results go against the theory of learning-by-doing, at least at their
data’s particular level of aggregation. In this paper, however, I formally show that L&Z’s
argument only holds under certain strong assumptions about the learning process; I show
that, in general, learning-by-doing is, in fact, consistent with the empirical evidence.

The inter-industry learning spillovers that endogenously result from my model connect
this paper with a recently flourishing literature on the macroeconomic implications of net-
work structures among industries. This literature, which has given particularly extensive
attention to the input-output structure of the economy, dates back to Hirschman (1958),
who influentially argued that economic development in one sector induces development
in other sectors that either use, or are used by, that sector as an input (“forward” and
“backward” linkages, respectively). This view of the development process was formalized
by Rodriguez-Clare (1996a and 1996b). Jones (2011) develops a static model in which
forward and backward linkages amplify the effects of exogenous sector-specific distortions
on aggregate total factor productivity, using US input-output data for illustration. Ober-
field (2013) develops a model in which the input-output structure of the economy arises
endogenously from firms searching for the lowest-cost suppliers of inputs; low-cost suppliers
endogenously emerge as “star suppliers,” providing inputs for many other firms and playing
an important role in propagating cost savings throughout the economy. The implications of
the input-output structure of the economy for volatility and business cycles were explored
in Long and Plosser (1983), and more recently Carvalho (2010) and Acemoglu et al (2012).

Note, however, that the network of industries in this paper is not based on input-output
linkages. While input-output linkages are an important channel through which shocks and
distortions are transmitted across industries, they are not, in and of themselves, a source
of growth.4 In contrast, the occupational learning spillovers that are the source of the
inter-industry network structure in this paper are indeed, in and of themselves, a source
of endogenous long-run growth. The focus of this paper on similarity across industries in
their required skills and knowhow complements the work of Hidalgo, Klinger, Barabasi,
and Hausmann (2007), who use observed overlap in the countries that export each product
to estimate an underlying network of products (which they call the “product space”) that

4This same point is made by Hanlon and Miscio (2016).
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represents overlap in the capabilities required to produce products. They offer evidence
that when countries branch out into new products, they do so by moving into products
that are near their old products in this network.

The difference between the network of input-output linkages and the network of indus-
tries based on occupational similarity can be seen in Figures 1 and 2, respectively. As these
figures illustrate, the topology of the network of industries based on occupational similarity
(the subject of this paper) is significantly different from that of the network of input-output
linkages.

The rest of this paper is organized as follows. In section 2, I introduce and analyze the
model in the context of a closed economy, while in section 3 I extend the analysis into a
multi-country framework. Section 4 analytically characterizes the link between learning-
by-doing and the evolution of comparative advantage, and provides reduced-form evidence
of such a link. In Section 5 I put quantitative discipline on the theory by taking the
model to data on trade and employment. I then use the calibrated model to quantify the
importance of inter-industry learning diffusion to the dynamics of comparative advantage
and aggregate growth. Section 6 concludes.
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Figure 1: The input-output structure of the US manufacturing sector

Note: this figure was generated using the 2013 US Direct Requirements input-output table from the Bureau
of Economic Analysis, at the three-digit NAICS level of aggregation (comprising 20 industries). The (h, i)
element of the Direct Requirements table is the number of dollars worth of intermediate input h used to
make one dollar’s worth of output in industry i. For each pair of industries h and i, if the (h, i) element
in the Direct Requirements table is above the 60th percentile of entries, then a line is drawn in this figure
between industries h and i.

7



Figure 2: Network structure of US manufacturing sector based on occupational similarity

Note: this figure was generated using 2013 US data on each industry’s employment of each occupation,
from the Occupational Employment Statistics program at the Bureau of Labor Statistics. Industries are
classified by their three-digit NAICS codes, and occupations are classified by their two-digit SOC (Standard
Occupational Classification) codes. The figure is based on the matrix whose (h, i) element is the correlation
coefficient between the industry-h vector of employment of each occupation (as a fraction of industry h’s
total employment) and the corresponding industry-i vector. For each pair of industries h and i, if the (h, i)
element in this matrix is above the 60th percentile of entries, then a line is drawn in this figure between
industries h and i.

2 Closed-economy model

I model an economy with multiple industries and multiple occupations. To fix ideas,
consider the following three industries and two occupations: automobile manufacturing,
airplane manufacturing, and finance; and engineers and economists. There is learning-by-
doing within each occupation, which spills over to everyone in the occupation regardless of
the industry for which they are working.

Consider, then, what happens if production increases in the car industry. Since the
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car industry employs a large number of engineers but only a small number of economists,
this will cause a significant increase in learning-by-doing among engineers, not so much
among economists. The extent to which this benefits another industry corresponds to
how much that other industry is engineer-intensive rather than economist-intensive − in
particular, it will lower the cost of production in the airplane manufacturing industry
more than the finance industry, since the former is engineer-intensive while the latter is
economist-intensive.

We can then think of industries as forming a network, where, for any two industries, the
strength of the link between them corresponds to how similar they are in their intensity of
usage of different occupations. As we will see in the analysis that follows, an industry that
is more central in this network will generate more learning spillovers and thereby contribute
more to aggregate economic growth.

2.1 The economic environment

Consider a closed economy with I industries5, indexed by i ; J occupations, indexed by j ;
and an arbitrary number of discrete time periods, indexed by t.

The representative household in this economy has a CES utility function over its con-
sumption of each good:

Ut = (
∑
i

βiC
γ−1
γ

it )
γ
γ−1 (1)

where Ut is the representative household’s utility at date t, Cit is its consumption of
good i at date t, βi is an exogenous parameter governing the intensity of the household’s
preference for good i, and γ is the hosehold’s elasticity of substitution across the different
goods.

At each date t, the representative household chooses {Cit}i to maximize Ut subject to
its budget constraint: ∑

i

PitCit = wtLt (2)

where Pit is the price of good i at date t; wt is the wage at date t; and Lt is the
household’s exogenous endowment of labor at date t, which it supplies inelastically.

The representative firm in industry i produces its good using labor from each occupation,
according to a production function that is CES with respect to the different occupations:

Yit = [
∑
j

αij(φijtLijt)
ε−1
ε ]

ε
ε−1 (3)

where Yit is output in industry i at date t, Lijt is employment of occupation j in
industry i at date t (in units of raw labor), φijt is productivity in occupation j in industry
i at date t (which evolves over time from learning-by-doing, as explained below), αij is an

5I will use the terms “industry” and “good” interchangeably.
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exogenous parameter governing the intensity with which industry i uses occupation j, and
ε is the elasticity of substitution across occupations (which, for tractability, is assumed to
be constant across industries).

At each date t and in each industry i, the industry-i representative firm chooses {Lijt}j
to maximize its profit πit:

πit = PitYit −
∑
j

wtLijt (4)

At each date t, labor markets must clear:∑
i

∑
j

Lijt = Lt (5)

as well as goods markets, so for each industry i at each date t:

Cit = Yit (6)

Productivity in each occupation j and industry i evolves over time from learning-
by-doing − which is not internalized by individual agents6 − according to the following
learning-by-doing function:

φi,j,t+1 = φijt[(1 + L̃ijt)
1−σ(1 + L̃jt)

σ]ρ (7)

where φijt is productivity in occupation j in industry i at date t; L̃ijt is the share of the
economy’s total effective labor in occupation j in industry i at date t; L̃jt is the share of the
economy’s total effective labor in occupation j at date t, summed across all industries7; and
ρ > 0 is an exogenous parameter governing the rate of learning-by-doing, while σ ∈ (0, 1)
governs the extent to which this learning spills over across industries. φij0 is exogenously
given for each occupation j and industry i.

Equation (7) is saying, for example, that the higher the fraction of the work force
working as engineers, the more learning-by-doing there will be among engineers. The
elasticity of learning with respect to labor usage is given by ρ. A fraction σ ∈ (0, 1) of
this learning spills over across all engineers, regardless of which industry they are working

6The assumption that learning-by-doing is in the form of externalities is made for tractability, and is
common in the macroeconomic literature on learning-by-doing, a brief survey of which is given by Acemoglu
(2008). Furthermore, the functional form in equation (7) − in particular, the assumption of a constant
elasticity of learning with respect to labor usage − is widely used in this same literature; the novelty here
is in the occupational dimension of learning.

7That is, L̃ijt ≡ φijtLijt∑
j

∑
i φijtLijt

and L̃jt ≡
∑

i φijtLijt∑
j

∑
i φijtLijt

. This formulation (in terms of shares rather

than levels) is chosen in order to avoid country-level scale effects − i.e., a doubling of the total size of the
labor force causing a doubling of the rate of per capita economic growth − which are at odds with the
data (see Rose (2006)). Equivalently, one could model the learning process as a function of levels rather
than shares, thereby exhibiting scale effects, but with the learning happening at a local level (e.g., the city
level), with learning spillovers across localities weak enough that the scale effects do not operate at the
country level − this echoes a similar point made by Ramondo et al (2016).
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in, while the other fraction 1 − σ of the engineers’ learning is industry-specific. Note
that implicit in equation (7) is an assumption, made for tractability, that ρ and σ are
constant across industries and occupations. In results that are available upon request, I
relax this assumption. However, it is worth emphasizing that even without making any
assumptions about occupations or industries exogenously varying from one another in their
rates of learning-by-doing, the model still results in heterogeneity across industries in the
amount of learning spillovers they generate, due to their different levels of centrality in the
occupational network of industries, as we will see below.

2.2 Equilibrium

Given the parameters {βi, γ, Lt, αij, ε, ρ, σ, φij0}i,j,t, an equilibrium of the economy is defined
as a path {Lijt, Yi, Ci}i,j,t such that at each date t,

1. The household’s consumption of each good {Cit}i maximizes its utility subject to its
budget constraint, given prices {Pit}i and the wage wt,

2. In each industry i, the industry-i representative firm’s employment of each occupation
{Lijt}j maximizes its profit, given the price of its output Pit and the wage wt,

3. The labor market clears:
∑

i

∑
j Lijt = Lt,

4. The goods markets clear: Cit = Yit for every industry i, and

5. Productivity in each occupation j and industry i evolves over time according to the
learning-by-doing equation (7).

The equilibrium of this economy, which for any set of parameters always exists and is
unique, is characterized as follows. The equations below are derived in the usual way from
the CES structure of the production and utility functions in equations (1) and (3). In what
follows, I normalize the nominal wage wt at each date t to 1, with all other prices expressed
relative to this.

The equilibrium price of output in industry i is

Pit = [
∑
j

(αij)
ε(

1

φijt
)1−ε]

1
1−ε (8)

Equilibrium consumption and production in industry i are

Yit = Cit =
(βi)

γ(Pit)
−γLt∑

i(βi)
γ(Pit)1−γ (9)

The equilibrium usage of occupation-j labor in industry i is

Lijt =
(αij)

ε(φijt)
ε−1PitYit∑

j(αij)
ε(φijt)ε−1

(10)
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As described in the previous section, productivity in each industry and occupation φijt
evolves from date t to t+1 according to the learning-by-doing equation (7), with φij0 given
for each occupation j and industry i. For a given specification of parameters, equations (7)
through (10) characterize the equilibrium of the economy.

2.3 Inter-industry learning spillovers

To see how the occupational learning-by-doing induces a network structure among indus-
tries, consider an increase in production in some arbitrary industry i and what effect this
has on growth in some other arbitrary industry h.

Given an increase in production in industry i, this induces more usage of each occupation
j, by an amount governed by αij, which is the parameter in industry i’s production function
(3) which governs how intensely industry i uses occupation j.

This extra usage of occupation j induces more learning-by-doing in occupation j. This
lowers the cost of production in industry h, by an amount governed by αhj, since αhj
governs how intensely industry h uses occupation j.

Thus, the extent to which growth in industry i lowers the cost of production in industry
h is a function of how similar industries i and h are, in terms of how much they use each
occupation.

We can gain further intuition into the network structure of learning spillovers among in-
dustries by considering the simple case where the representative household’s utility function
is Cobb-Douglas, the representative firms’ production functions are Leontief, and σ = 1
(that is, occupational learning perfectly spills over across industries). In this case, we get
the following intuitive result, as a first-order log-linear approximation, for how much an
exogenous increase in production in industry i at date t induces extra output growth in
industry h in equilibrium between date t and date t+ 1:

d log Yh,t+1

d log Yit
≈ ρ

∑
j

αhjα̃ij (11)

where α̃ij is the relative intensity with which industry i uses occupation j − that is,
α̃ij ≡ αij∑

i αij
− 1

I
, where I is the number of industries. The derivation of this result is given

in Appendix (A).
The result in equation (11) makes it explicit that if industries i and h are more similar to

each other in their occupational usage − that is, if αhj is high for the same occupations for
which α̃ij is high − then industries i and h will have a larger amount of learning spillovers
between them.

Note that equation (11) only describes how growth in industry i induces growth in
industry h one period ahead. But also note that, under this first-order approximation, this
relationship does not change over time. If we carry this approximation forward, then we
get the intuitive result that industry i’s importance to long-run aggregate growth (in a
sense that will be made precise below) is a function of the Bonacich centrality of industry
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i in the network of learning spillovers.8

Formally, let A denote the matrix whose (i, h) element is
d log Yh,t+1

d log Yit
in equation (11) above

− that is, A is the network matrix for the network of inter-industry learning spillovers. Then
an industry’s importance to long-run aggregate growth is captured, under this first-order
approximation, by its Bonacich centrality in this network − that is:

W ≈ β + δ(I− δA)−1Aβ (12)

where β is the vector of each industry’s exponent in the representative household’s
Cobb-Douglas utility function, δ is the representative household’s discount factor, I is the
identity matrix, and W is the vector whose ith element is the percentage increase in the
total discounted utility of the representative household (from date t onward) from a one
percent increase in production in industry i at date t. The derivation of this result is given
in Appendix (A).

3 Open-economy model

In the previous section I showed how, in the presence of occupational learning-by-doing,
industries that are more central in the network of inter-industry occupational learning
spillovers will contribute more to aggregate growth. In this section I extend the analysis
to incorporate multiple countries trading with each other, in order to address the question
of how a country’s amount of aggregate growth depends on which industries it produces
in equilibrium, i.e., on which industries it has a comparative advantage in. Moreover, the
dynamics of comparative advantage that endogenously arise from this open-economy model
will allow me in Section 5 to identify learning-by-doing in the data.

In this section I combine the model from section 2 with the static model of Ricardian
trade from Costinot, Donaldson, and Komunjer (2012) (henceforth “CDK”).9 At each date
t, the model in this section is essentially the CDK model − the only difference is that there
are multiple occupations, but this only matters for dynamics. The dynamics of the model,
as in section 2, are governed by learning-by-doing − as before, this learning-by-doing is
within each occupation, which spills over to everyone in the occupation regardless of the
industry for which they are working, generating network effects among industries. The
important thing to note here, which was a moot point in the single closed economy case,
is that these spillovers are within countries, not across countries.10

8Bonacich centrality is a measure of how important a node is in a network − e.g., in a network of
friends, the Bonacich centrality of an individual is her number of friends, plus a discount factor times the
number of friends her friends have, plus the discount factor squared times the number of friends her friends
of friends have, ad infinitum.

9The CDK model is an extension of Eaton and Kortum (2002) that allows for multiple industries.
More precisely, it allows for asymmetries in the production function parameters across industries; this
allowance for asymmetries across industries (in my case, asymmetries in how intensely each industry uses
each occupation) is what makes the CDK model useful for my purposes.

10In an extension to the analysis that is available upon request, I allow for learning to partially spill over
across countries. Note that if learning perfectly spills over across countries, the model is trivial; the amount
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3.1 Economic environment and equilibrium

As before, time is discrete and indexed by t. There are now N countries, indexed by m
and n. As before, there are I goods11, but now each good i comes in a countably infinite
number of varieties indexed by ω ∈ Ω ≡ {1, ...,+∞}.12

As before, labor is the only factor of production; workers can work in J different occu-
pations, indexed by j. Labor is perfectly mobile across occupations but immobile across
countries. Country m is endowed exogenously with Lmt workers at date t; each worker in
country m at date t is paid wage wmt, which will be determined in equilibrium.

The production structure of the economy is analogous to the closed-economy version
of the model, except with the addition of total factor productivity terms, which will be
discussed below. Specifically, the production function for variety ω of final good i in country
m is as follows:

yimt(ω) = zim(ω)[
∑
j

αij(φijmtLijmt(ω))
ε−1
ε ]

ε
ε−1 (13)

where yimt(ω) is the quantity of variety ω of final good i produced in country m at date
t; Lijmt(ω) is the amount of raw labor in occupation j used in the production of variety
ω of final good i in country m at time t; φjmt is productivity in occupation j in industry
i in country m at date t (which evolves over time from learning-by-doing, as explained
below); αij is an exogenous parameter governing the intensity with which industry i uses
occupation j; ε is the elasticity of substitution across occupations; and zim(ω) is the total
factor productivity of variety ω of final good i in country m, to be discussed below.

The TFP term zim(ω) is a random variable drawn independently for each triplet (i,m, ω)
from a Fréchet distribution Fim(·) such that13

of productivity growth in each industry is then equalized across countries rather than being a function of
which industries are produced in each particular country. The model is only interesting when there is at
least some degree of localization of learning, and in the baseline analysis I explore the simplest possible
case in which learning is entirely localized.

11I use the terms “goods” and “industries” interchangeably throughout this section.
12This infinite-variety structure is standard in the Ricardian trade literature, for the following reason.

If there were only one variety of each good, then the equilibrium would be riddled with corner solutions
– that is, for each good j and each country i, one hundred percent of country i’s consumption of good j
would be sourced by whichever country n could produce and deliver good j to country i most cheaply (or,
in knife-edge cases in which two or more countries could do so equally cheaply, there would be multiple
equilibria). With the infinite-variety structure, this is exactly what happens at the variety level, but when
we aggregate up to the good level − as we will do when taking the model to data − we have interior
solutions.

13This Fréchet distributional assumption is widely used in the quantitative Ricardian trade literature.
Kortum (1997) and Eaton and Kortum (1999) show how this structure can arise endogenously from a
process of technological innovation and diffusion − the intuition is that when each variety of each good
is produced according to the best known technique for producing that variety in that country, then the
distribution of productivity across varieties in a country will be an extreme value distribution such as
the Fréchet. Moreover, as discussed in Eaton and Kortum (2002), among extreme value distributions, the
Fréchet distribution uniquely gives us a tractable framework in which the equilibrium distributions of labor
requirements, costs of production, and prices are all in the same family.
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Fim(z) = exp[−(
z

zim
)−θ] (14)

for all z ≥ 0, where zim > 0 ∀i,m and θ > 1. zim is the total factor productivity
of country m in good i when averaged across good i’s infinite varieties, while θ governs
the dispersion of productivity, which is an important parameter in the Ricardian trade
literature, because the more that productivity varies, the more important is the force of
comparative advantage. Note that, for my purposes, these parameters are fixed over time,
while the occupational productivity terms evolve over time from learning-by-doing, as will
be discussed below.

Now let us consider trade between countries. I will make the standard assumption of
iceberg trade costs, meaning that for each unit of good i shipped from country m to country
n, only 1

dimn
< 1 units arrive, with dimn such that dimm = 1 ∀m and dimn ≤ dimldiln for any

third country l.
It follows from the CES production structure in (13), combined with the assumption of

iceberg trade costs, that

cimnt(ω) =
dimnwmt
zim(ω)

[
∑
j

(αij)
ε(φijmt)

ε−1]
1

1−ε (15)

is the cost of producing and delivering one unit of variety ω of good i from country m
to country n at date t. Aggregating up to the good level, define cimnt as follows:

cimnt ≡
dimnwmt
zim

[
∑
j

(αij)
ε(φijmt)

ε−1]
1

1−ε (16)

Markets are perfectly competitive, and therefore the price pint(ω) paid by buyers in
country n for variety ω of good i at date t is

pint(ω) = min
1≤m≤N

[cimnt(ω)] (17)

and the set of varieties of good i that are exported by country m to country n at date
t is given by

Ωimnt ≡ {ω ∈ Ω|cimnt(ω) = min
1≤l≤N

cilnt(ω)} (18)

Each country has a representative consumer whose utility function is a Cobb-Douglas
function of the composite goods, where each composite good is a CES function of its infinite
varieties. Let βim be country m’s Cobb-Douglas exponent on good i, and let σim be country
m’s elasticity of substitution among the infinite varieties of good i. (As in CDK (2012), I
assume σim < 1 + θ ∀i,m.) Accordingly, define pimt as follows:

pimt ≡ [
∑
ω∈Ω

pimt(ω)1−σim ]
1

1−σim (19)
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Then, defining eimt(ω) as total expenditure by country m on variety ω of good i at date
t, we have

eimt(ω) = (
pimt(ω)

pimt
)1−σimβimwmtLmt (20)

Furthermore, define eimnt as the value (in dollar terms) of total exports of good i from
country m to country n at date t; that is,

eimnt ≡
∑

ω∈Ωimnt

eint(ω) (21)

Then we get the result that

eimnt =
(cimnt)

−θ∑N
l=1(cilnt)−θ

βinwntLnt (22)

The date-t equilibrium of the world economy is pinned down by a balanced trade con-
dition. Let πimnt be country m’s share of the world exports (in dollar terms) of good i to
country n at date t; that is,

πimnt ≡
eimnt∑N
l=1 eilnt

(23)

Then, for a given wage vector wt = (wmt)m,

Zmt = (
N∑
n=1

I∑
i=1

πimntβinwntLnt)− wmtLm (24)

is the excess demand for country m’s labor at date t. The equilibrium at date t is
pinned down by specifying that Zmt = 0 for every country m.

As is typical in the Ricardian trade literature, there is no closed form solution for
this date-t equilibrium, but it can be computed using an algorithm from Alvarez and Lucas
(2007). The basic idea behind their algorithm is simple: start with an arbitrary guess for the
equilibrium wage vector wt = (wmt)i, calculate each country’s excess demand for labor Zmt,
and then raise the wage of any country m for which Zmt > 0 while lowering the wage of any
country m for which Zmt < 0. Keep doing this, and, under regularity conditions discussed
by Alvarez and Lucas, the algorithm will converge to a unique equilibrium wage (from
which the equilibrium values of all other variables can be straightforwardly computed).

That completes the description of the economy at date t. Each country’s productivity
in each occupation evolves over time from learning-by-doing − which is not internalized by
individual agents − according to the following learning-by-doing function:

φi,j,m,t+1 = φijmt[(1 + L̃ijmt)
1−σ(1 + L̃jmt)

σ]ρ (25)

where L̃ijmt is the share of country m’s total effective labor in occupation j in industry
i at date t, summed across all varieties of industry i; L̃jmt is the share of country m’s total
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effective labor in occupation j at date t, summed across all varieties of all industries14;
ρ > 0 is an exogenous parameter governing the rate of occupational learning-by-doing,
while σ ∈ (0, 1) governs the extent to which this learning spills over across industries; and
φijm0 is exogenously given for each occupation j, industry i, and country m.

3.2 Inter-industry spillovers in the open-economy model

In section 2.3 we asked, in the context of the closed-economy version of the model, when we
give an exogenous positive shock to production in a specific industry, what are the effects
on every other industry? In this section we ask, using the open-economy version of the
model, when we give an exogenous positive shock to production in a specific industry in
a specific country, what are the effects on every other industry in every other country?
Furthermore, what are the effects on each country’s welfare?

To start with, the inter-industry learning spillovers that were already present in the
closed-economy model carry over to the open-economy model. Now, however, thanks to
international trade, the learning-by-doing induced in a country by extra production in
an industry will affect other industries in that country not only through direct learning
spillovers, but also through indirect general equilibrium effects; an increase in learning-
by-doing in a country pushes up the country’s equilibrium wage, which − all else being
equal − makes industries in that country less competitive, and furthermore, consumers in
all countries benefit from the fall in the costs of production (and hence prices) induced by
learning-by-doing, not just the learning country.

If, as in section 2.3, we consider the particular case in which representative firms’
production functions are Leontief, then the network structure of inter-industry spillovers
takes a particularly simple, intuitive form, as we will see below. Furthermore, in what
follows, purely to simplify the expressions, I set the size of each country’s labor force
equal to one another (normalized to 1), I set each industry’s exponent in each country’s
representative consumer’s Cobb-Douglas utility function equal to one another (namely, 1/I,
where I is the number of industries), and I set σ = 1 (i.e., occupational learning perfectly
spills over across industries). Lastly, in order for the model to be analytically tractable, I
assume in this section that trade costs are zero.15

Under the above simplifying assumptions, the first-order approximation of country m’s
wage at date t is16

wmt ≈ [
∑
i

(
zim∑

j αijψjmt
)θ]

1
1+θ (26)

Note that this is a weighted average of country m’s date-t productivity in industry i
across all i, as one would intuitively expect. This result holds with exact equality when

14That is, L̃ijmt ≡
∑

ω φijmtLijmt(ω)∑
j

∑
i

∑
ω φijmtLijmt(ω)

and L̃jmt ≡
∑

i

∑
ω φijmtLijmt(ω)∑

j

∑
i

∑
ω φijmtLijmt(ω)

15Generalizing this analysis to non-zero trade costs is straightforward, so long as the trade costs are
symmetric across countries and industries − as discussed in Alvarez and Lucas (2007), asymmetric trade
costs make it difficult to get any analytical traction in a Ricardian trade model like this one.

16The derivation of this result is available upon request, along with all the other results of this section.
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the productivity terms are symmetric across countries and industries, but it is only an
approximation otherwise. The results in this section, which are first-order approximations,
are derived by plugging (26) into the equations of the model and then log-linearizing the
resulting system of equations.

For the purposes of this section, let ŷimt denote the logarithm of production in country
m in industry i at date t, and let Ŵmt denote the logarithm of country m’s welfare at date
t. Further, let

α̃ijm ≡
αij
zim∑
i
αij
zim

−
1
zim∑
i

1
zim

(27)

which is the relative intensity with which industry i uses occupation j in country m.

3.2.1 Effects of production in one industry on next-period production in an-
other industry

Results (28) and (29) below answer the question, given a positive shock at date t to pro-
duction in industry i in country m, what effect does this have on production at date t+ 1
in industry h in country n?

For any country m and any pair of industries i and h:

dŷh,m,t+1

dŷimt
≈ [1 + (

N − 1

N
)θ]ρ

∑
j

αhjα̃ijm − [(
1

I
)(
N − 1

N
)θ]ρ

∑
i′

∑
j

αi′jα̃ijm (28)

and for any pair of countries m and n 6= m and any pair of industries i and h:

dŷh,n,t+1

dŷimt
≈ −[(

1

N
)θ]ρ

∑
j

αhjα̃ijm + [(
1

I
)(

1

N
)θ]ρ

∑
i′

∑
j

αi′jα̃ijm (29)

The intuition behind (28) and (29) is as follows. The increase in production in industry
i in country m has a direct effect and an indirect effect.

The direct effect is as follows. For each occupation j, the extent to which an increase in
production in industry i in country m corresponds to an increase in usage of occupation j
relative to other occupations (and hence an increase in learning-by-doing in occupation j) is
given by α̃ijm (which, examining (27), can be positive or negative, since learning-by-doing
is based on relative occupational usage). The extent to which this extra learning-by-doing
in occupation j benefits industry h is given by αhj. Hence, the size of learning spillovers
between industries i and h is

∑
j αhjα̃ijm. If industries i and h are similar (dissimilar)

enough to each other in their occupational usage, then
∑

j αhjα̃ijm is greater (less) than
zero, and the direct effect on industry h within country m is positive (negative), while it
is negative (positive) in every other country, because in every other country industry h
becomes relatively less (more) competitive compared to country m.

The direct effect is scaled by ρ, since ρ is the rate of learning-by-doing. Furthermore,
the direct effect on each other country is scaled by 1

N
, where N is the number of countries,

as well as θ, since θ is the trade elasticity. This is balanced by the fact that the direct effect
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on country m itself is scaled by [1 + (N−1
N

)θ]; note that [1 + (N−1
N

)θ] − (N − 1)( 1
N

)θ = 1,
i.e., the scale factors on the direct effects across the world sum to one.

The indirect effect on industry h is as follows. Industry h is, of course, not the only
industry directly affected by industry i. Summing the term

∑
j αhjα̃ijm across all industries

gives us
∑

i′
∑

j αi′jα̃ijm, which is the size of the total learning spillovers from industry i
to all other industries − or, using network terminology, it is the first-degree centrality of
industry i in the network of industries. If industry i is sufficiently central (sufficiently
peripheral), then

∑
i′
∑

j αi′jα̃ijm is greater (less) than zero, and the high (low) amount of
learning-by-doing induced by the increase in production in industry i in country m raises
(lowers) country m’s equilibrium wage, which (all else being equal) makes each industry in
country m less (more) competitive and makes each industry in every other country more
(less) competitive.

As with the direct effect, the indirect effect is scaled by ρ, since ρ is the rate of learning-
by-doing. Moreover, the indirect effect (which, bear in mind, is capturing an individual
industry’s effect on the entire economy) is scaled by 1

I
, where I is the number of industries.

As with the direct effect, the indirect effect on each other country is scaled by 1
N

, where
N is the number of countries, as well as θ, since θ is the trade elasticity. This is balanced
by the fact that the indirect effect on country m itself is scaled by (N−1

N
)θ; note that

−(N−1
N

)θ + (N − 1)( 1
N

)θ = 0, i.e., the scale factors on the indirect effects across the world
sum to zero.

Note that if N = 1 (i.e., there is only one country in the world), then the indirect effect
is zero, and the total effect of the industry-i shock on industry h is ρ

∑
j αhjα̃ijm, which is

exactly the same as the closed-economy results from section 2.3.17

3.2.2 Effects on each country’s next-period welfare

Results (30) and (31) below answer the question, given the aforementioned positive shock
at date t to production in industry i in country m, what effect does this have on the date
t+ 1 welfare of country n?

For any country m and industry i:

dŴm,t+1

dŷimt
≈ (

1

I
)[1− (

N − 1

N
)(

1

1 + θ
)]ρ

∑
i′

∑
j

αi′jα̃ijm (30)

and for any pair of countries m and n 6= m and any industry i:

dŴn,t+1

dŷimt
≈ (

1

I
)[(

1

N
)(

1

1 + θ
)]ρ

∑
i′

∑
j

αi′jα̃ijm (31)

The intuition behind (30) and (31) partly carries over from the intuition above for
the indirect effects in Results (28) and (29) − the effects of the date t shock to industry

17There is a trivial difference, namely, the α̃ terms now (by (27)) include z terms, which made no
appearance in the closed-economy results, but that was just because there were no z terms in the closed-
economy model. If we were to add them in, we would get exactly the same result as here.
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i on countries’ welfare at date t + 1 is a function of industry i’s first-degree centrality∑
i′
∑

j αi′jα̃ijm, and again this is scaled by ρ and 1
I

(and by 1
N

for countries other than m)
for the same reasons as above.

Note, though, that the right-hand sides of (30) and (31) have the same sign rather than
opposite signs;

∑
i′
∑

j αi′jα̃ijm is greater (less) than zero when industry i is sufficiently
central (peripheral) in the network that an increase in production in industry i in country
m induces more (less) learning in the aggregate economy of country m, in which case other
countries benefit (are hurt) as well, due to buying products from country m at a lower
(higher) cost.

Furthermore, note that the effect on other countries is scaled by 1
1+θ

rather than θ;
a higher θ dampens the effect on other countries rather than exacerbating it − a higher
θ means less heterogeneity in intra-industry productivity, meaning (all else being equal)
international trade is less important for a country’s welfare, meaning extra economy-wide
learning in country i benefits other countries less. (This is in contrast with Results (28)
and (29), which were looking at the effects on a specific industry h, which are exacerbated
when intra-industry productivity varies less.)

Given that the effect on other countries is scaled by ( 1
N

)( 1
1+θ

), this is balanced by the

effect on country m itself being scaled by [1 − (N−1
N

)( 1
1+θ

)]; note that [1 − (N−1
N

)( 1
1+θ

)] +

(N − 1)( 1
N

)( 1
1+θ

) = 1, i.e., the scale effects on welfare across the world sum to one.

3.2.3 Effects on production and welfare more than one period ahead

Results (28) through (31) are only telling us the next-period effects of a shock to production
in industry i in country m; now let us consider the effects arbitrarily far into the future.
First we will consider the effects over time on production in each industry in each country.
Let Amn denote the I X I matrix whose (i, h) element is

dŷh,n,t+1

dŷimt
(which we found an

approximation for above, which does not depend on t). Let A be the (NI) X (NI) matrix
formed by appending the Amn matrices to each other, so that the (m,n) block of A is Amn.

Start from an arbitrary equilibrium path {ŷ?imt}i,m,t and consider an arbitrary vector
of shocks to production in each industry in each country at date t: let yt be the (NI)-
dimensional vector whose first I elements are ŷi1t − ŷ?i1t for each industry i in country 1;
the next I elements of yt are ŷi2t − ŷ?i2t for each industry i in country 2; and so on.

If we take the first-order approximations that we found above and suppose that they
approximately hold at any arbitrary point, then we have the result that for any date t and
any length of time τ beyond t:

yt+τ ≈ (A′)τyt (32)

While the single-closed-economy model involved a network of industries, (32) is saying
that we can think of this multi-country, open-economy model as involving a network of
countries and industries, where each node in the network is a country-industry pair, and
the network matrix A (whose entries we found above) gives us the effect of an increase
in production in industry i in country m on every other industry in every other country,
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with these effects being the aforementioned sum of direct learning spillovers and general
equilibrium effects via international trade.

Now let us consider the effects of this shock to production in industry i in country m
on each country’s discounted sum of welfare, summing from date t to ∞. Let wn be the

(NI)-dimensional vector whose first I elements are dŴn,t+1

dŷi1t
for each industry i in country 1

(which we found an approximation for above, which does not depend on t), whose second

I elements are dŴn,t+1

dŷi2t
for each industry i in country 2, and so on. Let W̄n denote the

discounted sum of country n’s logarithm of welfare over time, discounted at the rate δ −
that is, W̄n ≡

∑∞
t=0 δ

tŴnt.

Note, then, that dWn

dyt
is the (NI)-dimensional vector whose first I entries are dWn

dŷi1t
for

each industry i in country 1, whose second I entries are dWn

dŷi2t
for each industry i in country

2, and so on. In other words, dWn

dyt
is the vector telling us how much a shock at date t to

each country-industry pair affects country n’s discounted infinite sum of welfare from date
t onward. For any arbitrary country n, we have the following result:

dW n

dyt
≈ δwn + δ2Awn + δ3A2wn + ... (33)

Letting I denote the identity matrix, we can write this as

dW n

dyt
≈ δ(I + δA+ δ2A2 + ...)wn (34)

And so we have, for any arbitrary country n:

dW n

dyt
≈ δ(I− δA)−1wn (35)

The right-hand side of (35) is the vector of each country-industry pair’s Bonacich cen-
trality (from country n’s perspective) in the network of country-industry pairs. Recall from
section 2.3 that for any arbitrary network, a node’s Bonacich centrality is equal to the sum
of its first-degree links with every other node discounted by a discount factor δ, plus the
sum of its second-degree links with other nodes discounted by δ2, and so on. In this case
the links are weighted by the vector wn, which tells us how much a shock to production in
a given country-industry pair in a given time period affects country n’s next-period welfare
− which, as we found above, relates to each country-industry pair’s first-degree centrality
in the network.

4 The evolution of comparative advantage

The theoretical analysis showed how, in the presence of occupational learning, countries
with a comparative advantage in industries that are more central in the network of oc-
cupational learning spillovers will grow more in the aggregate. How does the pattern of
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comparative advantage itself evolve over time, as workers in different countries are learning
different things? In this section, I answer this question theoretically and empirically.

I start in Section 4.1 by deriving the model-implied dynamics of comparative advantage.
To aid intuition, I analyze in section 4.2 a stripped-down version of the model with only
industry-level learning-by-doing (i.e., without any occupational dimension to learning), in
which case the evolution of comparative advantage takes a particularly simple form. In
Section 4.3 I provide evidence in support of the mechanism underlying the model. In par-
ticular, a country’s growth in comparative advantage in an industry is positively correlated
with its initial level of comparative advantage in occupationally similar industries.

4.1 Model-implied dynamics of comparative advantage

I use the open-economy model of Section 3 to provide an analytical characterization of
the relationship between learning-by-doing and the evolution of comparative advantage. I
will use this characterization in Section 5 to calibrate the learning-by-doing parameters to
match the observed changes over time in trade data.

Let eimnt denote the date-t dollar value of exports in industry i from country m to
country n. In the CDK model, the logarithm of eimnt is equal to a sum of exporter-importer,
importer-industry, and exporter-industry dummies, plus an orthogonal error term:

ln eimnt = δmnt + δint + δimt + εimnt (36)

The pattern of comparative advantage (i.e., relative productivity differences across
country-industry pairs) can be identified off of the exporter-industry dummies in the above
regression.18 In particular, note that according to the model19,

ln eimnt = δmnt + δint + θ ln zim[
∑
j

(αij)
ε(φijmt)

ε−1]
1
ε−1 (37)

Combining equations (36) and (37), we have

e
δimt
θ = zim[

∑
j

(αij)
ε(φijmt)

ε−1]
1
ε−1 (38)

where the right-hand side of (38) is country m’s productivity in industry i at date t.
Thus, given an estimate of the trade elasticity θ, running regression (36) and plug-

ging the exporter-industry dummy coefficients δimt into equation (38) gives us estimates
of country-industry-level productivity. Note that the degrees of freedom in regression (36)
are such that δimt is only identified up to a double-normalization of δim?t = 1 ∀i for some
baseline country m? and δi?mt = 1 ∀m for some baseline industry i? − in other words, δimt
captures country m’s comparative advantage in industry i at date t. The proposition below

18Meanwhile, the exporter-importer dummies account for bilateral trade costs (e.g., distance between
countries), and the importer-industry dummies account for demand-side factors.

19Equation (37) can be derived by combining equations (16) and (22).
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captures the model’s predictions for how the pattern of comparative advantage evolves over
time.

Proposition 4.1. In the economic environment of section 3.1, with learning-by-doing gov-
erned by equation (25), country m’s comparative advantage in industry i at date t, δimt,
evolves from one period to the next in the following way:

δi,m,t+1 − δimt = θ(
1

ε− 1
) ln(

∑
j

(αij)
ε[(1 + L̃ijmt)

1−σ(1 + L̃jmt)
σ]ρ(ε−1)) (39)

Proof. See Appendix A.3.

Proposition 4.1 shows that a country’s change over time in its comparative advantage
in industry i is a weighted average of the size of each occupation in that country, both
within industry i and summing across industries, with the weight on an occupation given
by how intensely industry i uses the occupation. Note that the size of each occupation
in a country is itself, in equilibrium, determined by that country’s comparative advantage
in each industry, meaning that the change in a country’s comparative advantage in an
industry is a function of its initial level of comparative advantage in each industry.

This point − that in the presence of learning-by-doing, changes in comparative advan-
tage are a function of levels of comparative advantage − is particularly easy to see when
learning-by-doing is only at the industry level, without any occupational component. To
that end, in the following section I analyze a stripped-down version of the model, in which
there are no occupations and learning only happens at the industry level.

4.2 Dynamics of comparative advantage under purely industry-
level learning-by-doing

Empirically, we observe that countries with a larger comparative advantage in an indus-
try tend on average to experience less future growth in comparative advantage in that
industry. This was first documented by Levchenko and Zhang (2016) and Hanson, Lind,
and Muendler (2016), and is replicated in Section 4.3 of this paper. One might think
that this empirical finding goes against the theory of learning-by-doing, at least at the
industry level. Quoting from p. 106 of Levchenko and Zhang, “A strong implication of
[learning-by-doing] is that relative productivity differences increase over time − compara-
tive advantage strengthens. This is because learning is faster in sectors that produce more,
and comparative advantage sectors are the ones that produce more.”

In this section, I formally show that this argument only holds under certain strong
assumptions about the learning process. I show that, in general, learning-by-doing is, in
fact, consistent with the empirical evidence. In order to make the argument as simple
as possible, in this section I drop the occupational dimension from the analysis − that
is, the model in this section is the same as the model in Section 3, except there are no
occupations, and learning-by-doing is at the industry level. More specifically, learning-by-
doing is a function of industry-level output, and this learning-by-doing affects industry-level
TFP.
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Given that comparative advantage is estimated at the industry level (and not the oc-
cupation level), this makes the link between learning-by-doing and the evolution of com-
parative advantage particularly simple. The aim of this section is purely to crystalize our
thinking on the relationship between learning-by-doing and the dynamics of comparative
advantage; I will not be making use of the results in this section in the quantitative analysis
in Section 5.

For the sake of simplicity, in this section I consider the case in which trade costs are zero,
the size of the labor force in each country is equal to 1, and each country’s representative
household’s utility function puts equal weight on each industry.

Given the above discussion, the learning-by-doing equation I will consider in this sub-
section takes the following form:

zi,m,t+1

zimt
= (yimt)

ρ (40)

where ρ is the rate of learning-by-doing, yimt is country m’s industry-i output at date t,
and zimt is country m’s industry-i productivity20 at date t, with zim0 given for each country
m and industry i.

For each country m and each industry i, define country m’s comparative advantage
in industry i at date t (which I will denote by CAimt) in terms relative to country M ’s
productivity in industry I at date t − that is:

CAimt ≡
( zimt
zImt

)

( ziMt

zIMt
)

=
zimtzIMt

zImtziMt

(41)

Proposition 4.2. In the economic environment described above, with industry-level learning-
by-doing governed by equation (40) and comparative advantage defined by (41), the change
over time in a country’s comparative advantage in an industry is a function of that country’s
level of comparative advantage in that industry. In particular, as a first-order approxima-
tion:

d ln(CAi,m,t+1)

d ln(CAimt)
≈ 1 + ρ(1 + [

I − 1

I
]θ) (42)

Proof. See Appendix A.4.

Note from equation (42) that if ρ > 0, then
d ln(CAi,m,t+1)

d ln(CAimt)
> 1, i.e., learning-by-doing

(under this particular formulation of learning) induces divergence over time in comparative
advantage: if country 1 has a greater comparative advantage in an industry than country 2,
then over time country 1 will have an even greater comparative advantage in that industry
compared to country 2. Proposition 4.2 thereby formalizes the aforementioned intuition
from p. 106 of Levchenko and Zhang (2016).

It turns out, however, that this theoretical prediction of divergence in comparative
advantage is, in part, an artifact of the particular formulation of learning assumed in

20More precisely, zimt is the parameter of the Fréchet distribution that governs country m’s average
productivity in industry i at date t, averaged across the infinitely many varieties of industry i.
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equation (40). There are two aspects of this formulation that are key to generating the
divergence result: (1) the learning-by-doing is purely at the industry level, and (2) the
elasticity of learning with respect to output is constant (given by the single parameter ρ).
If we relax either one of these two assumptions, then learning-by-doing does not necessarily
generate divergence in comparative advantage.

For the sake of the argument, I illustrate below the implications of relaxing assumption
(2). In particular, suppose that learning-by-doing exhibits decreasing returns − that is, for
a given amount of date-t output in industry i, a country will learn more in industry i at
date t if its date-t productivity in industry was low to start with. We can think of this as
there being “low-hanging fruit” when one is just starting to learn something, while the more
advanced one becomes, the harder and harder it is to become yet more advanced. Then,
whether learning-by-doing induces convergence or divergence in comparative advantage
depends on the relative sizes of two opposing forces.

Imagine comparing two countries, one of which is more productive than the other in
industry i at date t. Will the backward country converge to the advanced one, or will
the two countries further diverge? On the one hand, due to the decreasing returns in
the learning-by-doing function, if the two countries were to produce at date t the same
amount of industry i output, the more backward country would learn more − the size of
this effect is captured below by a parameter λ. On the other hand, the two countries will
obviously not produce the same amount of industry i output; the more advanced country
will produce more, due to having a comparative advantage in it − the size of this effect
is captured by the trade elasticity θ. Hence, whether there is convergence or divergence
depends on the relative sizes of λ vs. θ. The tension between these two forces is captured
by the proposition below.

Proposition 4.3. Suppose we have the same economic environment as in Proposition 4.2,
except there are diminishing returns in the learning-by-doing function. Specifically, suppose
the learning-by-doing equation is as follows:

zi,m,t+1

zimt
= (zimt)

−λ(yimt)
ρ (43)

where λ ≥ 0 governs the rate of diminshing returns to learning-by-doing.
Then learning-by-doing induces convergence or divergence in comparative advantage,

depending on how quickly returns to learning-by-doing are diminishing vs. the size of the
trade elasticity (scaled by the number of industries). Specifically, as a first-order approx-
imation, there is convergence in comparative advantage if λ

ρ
> 1 + ( I−1

I
)θ, while there is

divergence if λ
ρ
< 1 + ( I−1

I
)θ.

Proof. Through the same steps as in the proof of Proposition 4.2,

d ln(CAi,m,t+1)

d ln(CAimt)
≈ 1− λ+ ρ(1 + [

I − 1

I
]θ) (44)

Whether there is convergence or divergence in comparative advantage corresponds to

25



whether this expression is greater than or less than one. Hence, there is convergence if
λ
ρ
> 1 + ( I−1

I
)θ, while there is divergence if λ

ρ
< 1 + ( I−1

I
)θ.

This section and the previous section have shown theoretically how learning-by-doing
induces a particular relationship between the cross-sectional pattern of comparative advan-
tage, and the evolution of comparative advantage from one period to the next. Given these
theoretical findings, in the following section I provide evidence of such a relationship.

4.3 Evidence on the dynamics of comparative advantage

Section 4.2 has shown how, in the presence of industry-level learning-by-doing, the change
in a country’s comparative advantage in an industry is a function of its level of compara-
tive advantage in that industry. Section 4.1 showed how, in the presence of occupational
learning, the change in country m’s comparative advantage in industry i is a function of
country m’s level of usage of each occupation, which is itself a function of country m’s level
of comparative advantage in each industry h, to the extent that industry h uses similar
occupations as i. In this section I provide evidence of these relationships between levels
of comparative advantage and changes in comparative advantage, both within industries
and across industries, as a function of their occupational similarity. I do so through the
following regression:

ln(CAi,m,t+∆)− ln(CAimt) = β0 + β1 ln(CAimt) + β2 ln(OccCAimt) + εimt (45)

where CAimt is countrym’s comparative advantage in industry i at date t, andOccCAimt
is a weighted average of country m’s date-t comparative advantage in every industry h other
than industry i, with each industry h weighted by its occupational similarity to industry
i. The details of the construction of these variables are provided in Section 4.3.1.

4.3.1 Data

In order to estimate comparative advantage using the CDK method, I use international
trade data from Feenstra et al (2005). The data report bilateral exports among 72 countries,
at the 4-digit SITC Revision 2 product level, annually over the years 1962-2000. Hence,
an example of an observation in this dataset is that, in 1978, Japan exported to Italy
$2,447,000 (in 1978 nominal US dollars) worth of silk worm cocoons and silk waste (SITC
Rev. 2 code 2614). The number of products that appear in the data gradually increase
over time from 696 in 1962 to 1288 in 2000.21

In order to merge these data with the industry-occupation table described below, I re-
classify exports from 4-digit SITC Rev. 2 product codes into 3-digit 1997 NAICS industry
codes, using a concordance table from Feenstra and Lipsey (n.d.). I restrict the sample

21These data include the dollar value reported by the importing country as well as the value reported by
the exporting country; I follow the standard practice of using the value reported by the importing country,
which is generally seen as more reliable, since countries have more of an incentive to carefully keep track
of goods entering their borders than leaving them.
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to manufacturing industries that appear in the industry-occupation table, and I further
restrict the sample to countries and industries that appear across the sample period. We
are left, then, with 44 countries and 20 industries, which are listed in Appendix B, in Tables
6 and 7, respectively.

Regression (45) requires cross-sectional trade data from two different points in time, t
and t+ ∆. Rather than estimating each country’s comparative advantage in each industry
each year, and then examining year-by-year fluctuations (which could be confounded by
business cycle phenomena far removed from the subject of this paper, as well as a large
amount of measurement error), I follow Levchenko and Zhang (2016) and Hanson, Lind,
and Muendler (2016) (“L&Z” and “HLM”) by averaging eimnt (exports of industry i from
country m to country n in year t) by decade, and then using these averaged export data
to estimate each country’s average comparative advantage in each industry each decade.
Comparative advantage is estimated following CDK; that is, ln(CAimt) = δimt/θ, following
equation (38).

In order to construct the variable OccCAimt, I use 2013 US data on how many people
each industry employs in each occupation, from the Occupational Employment Statistics
(OES) program at the Bureau of Labor Statistics (BLS). The industries, as explained
above, are classified at the 3-digit NAICS level, while the occupations are classified at the
2-digit Standard Occupational Classification (SOC) level; the industries and occupations
are reported in Appendix B, in Tables 7 and 8, respectively. From these data I construct
a simple reduced-form measure of occupational similarity OccSimih between industries i
and h, namely, the correlation coefficient between the industry-h vector of employment of
each occupation (as a fraction of industry h’s total employment) and the corresponding
industry-i vector. OccCAimt is then defined as

∑
hOccSimihCAimt.

4.3.2 Results

Table 1 reports the results of running regression (45) for each pair of decades within the
span of the data. The first result worth noting is that the within-industry effect is always
(with one exception) negative and significant− that is, if a country has a larger comparative
advantage in an industry, then on average its future growth in comparative advantage in
that industry is smaller.22 This finding is in line with L&Z and HLM. As discussed in
section 4.2, L&Z argue that this finding contradicts the theory of learning-by-doing (at
least at the industry level), but as demonstrated in section 4.2, industry-level learning-by-
doing is in fact consistent with this finding, if the within-industry returns to learning are
decreasing at a rate fast enough in comparison with the size of the trade elasticity.

The second result worth noting in Table 1 is a significant and positive cross-industry
effect, as a function of industries’ occupational similarity. That is, holding fixed a country’s
comparative advantage in industry i, if that country has a higher comparative advantage
in occupationally similar industries, then that country will on average have higher future
growth in its comparative advantage in industry i.

22The one exception is from the 1960’s to 1970’s, in which the within-industry effect is statistically
insignificant.
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It is worth emphasizing that this is not simply regressing changes in comparative advan-
tage on concurrent changes in comparative advantage in occupationally similar industries,
which could easily be explained by any arbitrary occupation-specific shocks (e.g., shocks
to occupation-specific education policy) that affect different industries to the extent they
use those occupations. Instead, Table 1 is showing that future changes in comparative
advantage are positively related to previous levels of comparative advantage in occupation-
ally similar industries. This finding is suggestive of significant dynamic occupation-based
agglomeration economies, with occupational learning being one possible mechanism behind
this.

Table 1: Effect of the level of comparative advantage on growth in comparative advantage
(within industries and across industries, as a function of their occupational similarity)

ln(CA 70′s
CA 60′s

) ln(CA 80′s
CA 70′s

) ln(CA 90′s
CA 80′s

) ln(CA 80′s
CA 60′s

) ln(CA 90′s
CA 70′s

) ln(CA 90′s
CA 60′s

)

ln(CA 60’s) 0.0243 -0.859*** -0.249***
(0.0359) (0.0253) (0.0626)

ln(OccCA 60’s) 0.113** 0.139*** 0.233***
(0.0471) (0.0281) (0.0858)

ln(CA 70’s) -0.856*** -0.290***
(0.0201) (0.0455)

ln(OccCA 70’s) 0.103*** 0.181**
(0.0252) (0.0725)

ln(CA 80’s) -0.347***
(0.122)

ln(OccCA 80’s) 0.736***
(0.132)

Observations 880 880 880 880 880 880
R-squared 0.033 0.789 0.051 0.699 0.068 0.029

Note: each observation is at the country-by-industry level. CA t is country m’s comparative advantage in
industry i at date t, estimated following Costinot, Donaldson, and Komunjer (2012). OccCA t is a
weighted average of country m’s date-t comparative advantage in every industry h other than industry i,
with each industry h weighted by its occupational similarity with industry i. All variables averaged by
decade. Constant terms not reported in this table. Standard errors (in parentheses) clustered by country
(44 countries). *** Significant at 1% level, ** 5% level, * 10% level.

5 Quantitative analysis

In the theoretical analysis of this paper I have shown how, in the presence of occupational
learning-by-doing, a country grows more when it has comparative advantages in industries
that are more central in the network of inter-industry occupational learning diffusion, and
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the size of a country’s comparative advantage in an industry itself evolves over time as a
function of the size of different occupations in that country. This raises the question of how
quantitatively important is this occupation-based inter-industry network structure in ex-
plaining the evolution of comparative advantage and the importance of different industries
to aggregate growth.

The key challenge in answering this question is in estimating the two key parameters
that govern the dynamics of the model, namely, ρ and σ − the rate of occupational learning-
by-doing, and the extent to which this learning spills over across industries, respectively.
I use the model-predicted dynamics of comparative advantage, as characterized in section
4.1, to quantitatively discipline these two parameters. I describe below the calibration of
the static parameters of the model and the subsequent estimation of the learning-by-doing
parameters. I then use the calibrated model for two quantitative exercises. First, I quantify
the importance of learning-by-doing to the dynamics of comparative advantage. Second, I
assess how important each industry is to aggregate growth − in particular, how much an
increase in a country’s productivity in an industry boosts that country’s equilibrium real
income.

5.1 Calibration

In this section I describe the calibration of the static parameters of the model: the intensity
αij with which industry i uses occupation j, the industry-i exponent βi in the representative
household’s Cobb-Douglas utility function, the elasticity of substitution across occupations
ε, the size of country m Lm, and the trade elasticity θ. The calibration of these parameters
is summarized in Table 2.

I calibrate αij using 2013 US data on each industry’s employment of each occupation
from the Bureau of Labor Statistics. For each industry i and occupation j, I set αij equal to
the number of people in occupation j that industry i employs, divided by the total number
of people that industry i employs.

Under the assumption that preferences are constant over time and across countries, I
calibrate βi using the 2012 Use Table from the Bureau of Economic Analysis (BEA) in the
US. For each industry i, I set βi equal to personal consumption expenditures on industry
i divided by total personal consumption expenditures.

As described in Section 4.3.1, industries are classified at the 3-digit NAICS level, while
occupations are classified at the 2-digit Standard Occupational Classification (SOC) level.
The industries and occupations are reported in Appendix B, in Tables 7 and 8, respectively.

To calibrate the size of each country, I use the World Development Indicators (WDI)
from the World Bank.23 Specifically, for each country m, I set Lm so that wmLm equals
country m’s GDP.

There is a substantial literature that provides a range of estimates of the trade elasticity
θ. I borrow the value 6.53 from CDK, as their trade model has the same cross-sectional

23Taiwan is not included in the World Development Indicators, so for Taiwan I use the Monthly Bulletin
of Statistics of the Republic of China.
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structure as mine, and they estimate the trade elasticity using data from the same set of
manufacturing industries as in my paper. For the elasticity of substitution across occu-
pations, ε, I borrow the estimate 0.9 from Goos et al (2014), which is also used by Lee
(2017). Goos et al. estimate this elasticity off of the observed correlation between the level
of demand for an occupation within an industry and a measure of industry marginal costs,
using industry-occupation employment data at the same level of aggregation as my paper.

Table 2: Summary of calibration of static parameters

Parameter Meaning Value Target / source
αij Occupation j’s weight in − US employment

industry i’s prod. fun. data (BLS)
βi Industry i’s weight − US output data

in utility function (BEA)
ε Elasticity of substitution 0.9 Goos et al. (2014)

across occupations
Lm Size of country m − World Development

Indicators
θ Trade elasticity 6.53 CDK (2012)

5.2 Estimating learning-by-doing and quantifying its relevance
to dynamics of comparative advantage

Following CDK, I estimate each country’s comparative advantage in each industry for each
time period. (See Section 4.1.) I jointly estimate the learning-by-doing parameters ρ and
σ to minimize the sum of squared errors between the model’s predictions and the data,
with regard to the moment condition from (39) linking changes in comparative advantage
to previous levels of employment − that is:

(ρ̂, σ̂) = argmin
ρ,σ

∑
i

∑
m

{εimt(ρ, σ)}2 (46)

where

εimt(ρ, σ) ≡ δi,m,t+1 − δimt − θ(
1

ε− 1
) ln(

∑
j

(αij)
ε[(1 + L̃ijmt)

1−σ(1 + L̃jmt)
σ]ρ(ε−1)) (47)

This estimation strategy exploits the fact that in the presence of occupational learning-
by-dong, a country’s change over time in its comparative advantage in an industry is a
weighted average of the size of each occupation in that country, both within that industry
and across other industries, with the weight on an occupation determined by how intensely
that industry uses each occupation.

30



Note that this estimation strategy requires two different cross sections of trade data. I
average the export data into ten-year bins, estimating each country m’s average compara-
tive advantage in each industry i over ten-year periods, plugging these estimates δimt into
(47) in order to calibrate ρ and σ. Table 3 below shows the resulting values of ρ and σ for
each possible combination of pairs of time periods, along with bootstrapped 95% confidence
intervals.24

Table 3: Best-fit values of ρ and σ, and 95% confidence intervals

Time period ρ (rate of learning) σ (extent of inter-industry diffusion)

60’s to 70’s 12.5 0.74
[8.4, 18.1] [0.49, 1.02]

70’s to 80’s 10.4 0.96
[4.8, 14.6] [0.68, 1.97]

80’s to 90’s 10.2 0.72
[7.4, 16.7] [0.46, 1.08]

60’s to 80’s 10.8 0.93
[6.8, 14.7] [0.66, 1.50]

70’s to 90’s 10.9 0.78
[7.5, 15.1] [0.54, 1.10]

60’s to 90’s 10.7 0.81
[8.1, 15.4] [0.52, 1.08]

The estimates of ρ range from 10.2 to 12.5. A value of 12.5 for ρ means that a one per-
centage point increase in the share of a country’s labor force in an occupation is associated
with a 12.5% higher productivity in that occupation in that country from one decade to
the next. Estimates of σ range from 0.72 to 0.96. A value of 0.74 for σ means that 74%
of occupational learning spills over across industries. The fact that, in each of the above
estimates, σ > 0.5 means that the occupational dimension to learning is more important
the industry dimension.

How well does the calibrated model match the observed dynamics of comparative advan-
tage? Table 4 shows the correlation (“Corr”) between the calibrated model’s predictions
and the data, with regard to changes over time in comparative advantage (that is, the
correlation between the left-hand and right-hand sides of (39) given the calibrated values

24Confidence intervals were obtained by randomly drawing a subsample of 22 countries and 10 industries,
finding the ρ̂ and σ̂ that solve minimization problem (46) within this subsample of countries and industries,
and doing this 1000 times to obtain a distribution of 1000 values of ρ̂ and σ̂ for each time period. The
resulting histograms for ρ̂ and σ̂ for the 1960’s to 1970’s time period are shown in Figures 5 and 6 in
Appendix B. The histograms for the other time periods are available upon request.
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of ρ and σ). This is shown for each possible time horizon, namely, changes in comparative
advantage over ten, twenty, and thirty years. The correlation between the model’s predic-
tions and the data is positive over each time horizon: 0.09 over a ten-year time horizon,
0.05 over twenty years, and 0.07 over thirty years.

For comparison, Table 4 also shows the corresponding correlation under the null model,
in which σ = 0, i.e., in which learning is only within-industry. (Under this null model, I
re-calibrate ρ so as to best fit the data under the condition σ = 0. The resulting value
for ρ is also reported in Table 4.) The null model performs significantly worse, meaning
that learning-by-doing helps explain the dynamics of comparative advantage significantly
better when one accounts for inter-industry learning diffusion. More precisely, by this
metric, accounting for inter-industry learning diffusion improves the fit of the model to the
data by a factor of 4.5 when looking at changes in comparative advantage from the 60’s to
the 70’s, and even more so when looking further out.

Table 4: Goodness of fit with regard to changes in comparative advantage

60’s to 70’s 60’s to 80’s 60’s to 90’s
Best-fit ρ 12.5 10.8 10.7
Best-fit σ 0.74 0.93 0.81
Corr 0.09 0.05 0.07

ρ when σ = 0 19.1 18.0 16.8
Corr when σ = 0 0.02 -0.16 -0.04

Note that the method in this section for estimating ρ and σ targets the average extent
of dynamic occupational agglomeration economies. Among the possible mechanisms that
can generate such dynamics, learning-by-doing has received particularly heavy emphasis in
prior literature (as surveyed in Acemoglu (2008), and as discussed in Levchenko and Zhang
(2016)), and hence is used to guide our thinking throughout this paper. However, other
possible mechanisms include dynamic occupational economies of scale on the firms’ side −
i.e., when a larger number of people are employed in an occupation, employers better learn
over time how to efficiently hire and make use of this occupation. The estimation strategy
in (46) is not equipped to quantify the relative amounts of occupational learning-by-doing
per se vs. other sources of dynamic occupation-based agglomeration economies, but rather
it is intended to quantify the total importance of such occupation-based scale effects.

5.3 Quantifying each industry’s importance to aggregate growth

The theoretical analysis showed how an industry contributes more to aggregate growth
when it is more central in the network of occupational learning spillovers. The goal of this
section is to quantify the size of this effect.

Consider a counterfactual 10% increase in a country m’s productivity in some partic-
ular industry i, and hence an increase in m’s comparative advantage in industry i. We
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can think of this shock as a simple analytical stand-in for a policy in country m that dis-
proportionately benefits industry i − for example, a subsidy to research and development
in that industry. How much does this raise the country’s next-period real income? How
does this depend on the particular industry i? In this section I carry out this exercise for
each country and each industry in the sample − note that this is a separate counterfactual
exercise for each country and industry; i.e., this is not meant to capture any interactions
in the effects of shocks to different industries or countries.

As an illustration, Figure 3 plots the results for China, starting from the initial equi-
librium of the 1960’s. The dark blue bars in the graph show the equilibrium increase in
China’s GDP predicted by the calibrated model (with ρ = 12.5 and σ = 0.74), while the
light grey bars show the increase in the case of the null model without any inter-industry
learning diffusion, i.e., with σ = 0 (still with ρ = 12.5).25 The ratio of the length of in-
dustry i’s dark blue bar to the length of its light grey bar represents the extent to which
industry i’s contribution to aggregate growth is through the diffusion of learning in that
industry into other industries, rather than the direct effect of the increase in industry i’s
productivity itself. Figure 4 plots the average ratio for each industry, averaging across each
of the countries in the sample.

25Another natural benchmark is with no learning at all, i.e., with ρ = 0, the results of which are plotted in
Figure 7 in Appendix B. The results are similar to the case in which σ = 0. Given that the rate of learning
ρ is the same for each industry, the main driver of asymmetries across industries in their contribution to
aggregate growth in this model is not learning in itself (i.e., ρ > 0), but rather the diffusion of occupational
learning across industries (i.e., σ > 0) combined with the asymmetries in how intensely each industry uses
each occupation.
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Figure 3: Percent increase in China’s GDP, given 10% increase in industry-i productivity
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Figure 4: Effect of industry-i productivity shock on GDP: average ratio, calibrated model
vs. only intra-industry learning

Note: this graph plots the geometric average (across each country m in the sample) of ↑GDPm(i)
Null↑GDPm(i) for

each industry i, where ↑ GDPm(i) is the prediction of the calibrated model (with ρ = 12.5 and σ = 0.74)
for the percent increase in country m’s next-period real income, given a 10% increase in country m’s
productivity in industry i, while Null ↑ GDPm(i) is the corresponding prediction of the null model with
no inter-industry learning diffusion, i.e., with σ = 0.

We can get an intuitive sense of what drives the differences across industries in Figures
3 and 4 by examining the diagrammatic representation of the occupation-based network of
industries in Figure 2 from the introduction. For industries that are highly central in the
network, such as primary metals, the null model with no inter-industry learning diffusion
significantly understates their contribution to aggregate growth. Meanwhile, for industries
that are peripheral in the network, such as petroleum and chemicals, an increase in produc-
tivity in these industries − and hence an increase in the country’s comparative advantage
in these industries − draws workers into these industries and away from industries that
generate more inter-industry learning diffusion, meaning that the null model overstates
their contribution to aggregate growth.

More precisely, recall the result from Equation (12) that, as a first-order approxima-
tion, the total impact of the inter-industry learning spillovers generated by an industry
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on a country’s aggregate real income is given by that industry’s Bonacich centrality in
the network of occupational learning diffusion.26 Table 5 below ranks industries by their
Bonacich centrality, and also ranks industries by the ratios reported in Figure 4, i.e., by the
model-predicted extent to which an industry’s contribution to aggregate growth is through
the diffusion of learning in that industry into other industries.

The two rankings in Table 5 do not perfectly match, as Equation (12) is only an ap-
proximation of the model derived in the special case of Leontief production, but the two
rankings have a significantly positive correlation of 0.43. Hence, the intuitive notion of
Bonacich centrality does a good job of capturing much of the model-predicted variation in
how much inter-industry learning diffusion each industry generates.

The average discrepancy between the calibrated model and the model with no inter-
industry learning diffusion (i.e., the average length of the bars in Figure 4) is a factor of
1.6, meaning that according to these estimates of the learning parameters, 1

1.6
(62%) of the

average industry’s contribution to aggregate growth is through the direct effect of growth in
that industry itself. This means that according to these estimates, a sizable fraction − 38%
− of the average industry’s contribution to aggregate growth is through the inter-industry
learning spillovers that it generates.

Table 5: Industries ranked by amount of learning diffusion and by their centrality

Industry Ranking by Inter-Industry Ranking by Bonacich
Learning Diffusion Centrality

Electrical Equipment 1 9
Transportation Equipment 2 11

Primary Metals 3 5
Textiles 4 2

Misc. Manufacturing 5 12
Paper 6 6

Machinery 7 7
Plastics 8 4
Apparel 9 1

Electronics 10 17
Fabricated Metals 11 3

Printing 12 8
Minerals 13 14

Food 14 13
Chemicals 15 16

Petroleum/Coal Products 16 15
Wood Products 17 10

Rank Correlation = 0.43

26Table 9 in Appendix B reports each industry’s Bonacich centrality, as calculated using Equation (12).
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6 Conclusions

This paper provides a theoretical and quantitative characterization of the link between
occupational learning-by-doing and the evolution of comparative advantage, shedding new
light on why the pattern of comparative advantage across countries and industries has
changed over time. In so doing, it also provides a novel mechanism for why different indus-
tries contribute differently to long-run economic growth. In particular, this paper shows
how occupational learning-by-doing induces an endogenous network of inter-industry learn-
ing spillovers, in which industries that are more central in this network generate more ag-
gregate growth, and countries with comparative advantages in these more central industries
grow more in equilibrium. These effects turn out to be quantitatively significant, with more
than a third of the average industry’s contribution to aggregate growth being in the form
of inter-industry learning spillovers.

Although this paper’s focus is on occupational learning at the country-industry level,
there is scope for future research at finer levels of aggregation. Employer-employee matched
data, for example, allow one to track the movement over time of individual workers across
firms and industries, as well as the variation over time in firm-level productivity, allowing
one to estimate how much workers’ previous knowhow carries over to their new jobs, and
to what extent their knowledge spills over to their new coworkers and employers.

Moreover, this paper focuses on one of possibly many components to learning, in par-
ticular the occupational component, as occupations are a particularly salient dimension
through which productive knowledge can diffuse. However, there are other potentially im-
portant channels of learning as well; for example, firms might learn over time how to more
efficiently use intermediate inputs. A quantitative examination of the relative importance
of these and other learning channels to the evolution of comparative advantage is beyond
the scope of this paper, but is an important area for future research.

Given the learning externalities that play a front-and-center role in the model, the
model implies wide scope for welfare-enhancing policy. In some respects, this echoes a
previous generation of theoretical literature that argued that, if some industries generate
more learning spillovers than others, then there are grounds for governmental prioritization
of the more learning-intensive industries. The novelty here is that, in the presence of
occupational learning spillovers, even if industries are symmetric to one another in their rate
of learning, there are grounds for prioritizing industries that are more central in the network
of occupational learning diffusion. Such prioritization can take the form of industry-specific
tariff policy, or credit subsidies to specific industries, which can be rationalized by this
model even in the absence of financial frictions.
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A Derivation of theoretical results

A.1 Derivation of Equation 11

We will log-linearize around the symmetric case in which, at some date t, all occupational
productivities are the same and production is equal across industries, that is, φjt = φkt
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∀j, k and Yit = Yht ∀i, h. Combining the equilibrium equations (7) through (10) (with
Cobb-Douglas utility and Leontief production, i.e., γ → 1 and ε→ 0), we have

log(Yh,t+1) ≈ log(βhLt+1)−
∑
j

αhjlog(φjt)

+ ρ
∑
j

αhjlog(
∑
i

αij) + ρ
∑
j

αhj
∑
i

(
αij∑
m αmj

)log(Yit)

− ρ
∑
j

αhjlog(I)− ρ
∑
j

αhj
∑
i

(
1

I
)log(Yit) (48)

By taking the derivative of (48) with respect to log(Yit), we see that a 1% increase in
Yit causes approximately an Aih% increase in Yh,t+1, where

Aih ≡ ρ
∑
j

αhj(
αij∑
m αmj

− 1

I
) (49)

A.2 Derivation of Equation 12

Consider an arbitrary equilibrium path {Y ?
it}i,t and corresponding {U?

t }t. Suppose, starting
from this equilibrium path, we increase Yit by 1% for some industry i at some date t. Let
us now calculate the effect that this has on the total discounted utility of the representative
household from date t onward.

Let lowercase letters denote log-deviations from the previous equilibrium path. Specifi-
cally, let yit ≡ log(Yit)−log(Y ?

it ) and ut ≡ log(Ut)−log(U?
t ). Let ~yt denote the I-dimensional

vector specifying yit for each industry i. Let u denote the discounted sum of log-deviations
in utility over time, i.e., let u ≡

∑
t δ

tut, where 0 < δ < 1 is the representative household’s
discount factor. Let β denote the I-dimensional vector specifying the industry-i exponent
in the representative household’s Cobb-Douglas utility function, and let I denote the IxI
identity matrix.

Using the approximation from above that a 1% increase in Yit causes an Aih% increase
in Yh,t+1, where Aih is defined by (49), then if we let A denote the IxI matrix whose (i, h)
element is Aih, then ~yt+1 ≈ A~yt. Let us now calculate du

d~yt
, which is the I-dimensional vector

whose ith element gives the total discounted sum of percent increases in the representative
household’s utility from a 1% increase in Yit:

du

d~yt
≈ β + δAβ + δ2A2β + δ3A3β + . . .

= β + δ(I + δA+ δ2A2 + . . . )Aβ

= β + δ(I− δA)−1Aβ (50)
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The right-hand side of (50) is the I-dimensional vector whose ith element is the Bonacich
centrality of industry i in the network of industries, with each industry i weighted by its
exponent βi in the representative household’s Cobb-Douglas utility function.

A.3 Proof of Proposition 4.1

Combining equations (25) and (38), we have, at date t+ 1,

e
δi,m,t+1

θ = zim{
∑
j

(αij)
ε(φijmt[(1 + L̃ijmt)

1−σ(1 + ˜̃Ljmt)
σ]ρ)ε−1}

1
ε−1 (51)

Given the log-linearity of the learning-by-doing equation27, we can normalize φijmt to 1
for every industry-i-occupation-j-country-m. We then have, at date t,

e
δimt
θ = zim (52)

while at date t+ 1 we have

e
δi,m,t+1

θ = zim{
∑
j

(αij)
ε[(1 + L̃ijmt)

1−σ(1 + ˜̃Ljmt)
σ]ρ(ε−1)}

1
ε−1 (53)

Dividing equation (53) by equation (52) and taking logs on both sides28, we have our
result:

δi,m,t+1 − δimt = θ(
1

ε− 1
) ln{

∑
j

(αij)
ε[(1 + L̃ijmt)

1−σ(1 + ˜̃Ljmt)
σ]ρ(ε−1)} (54)

This proves the proposition. �

A.4 Proof of Proposition 4.2

A change in CAimt changes CAi,m,t+1 through zimt’s effect (via learning-by-doing) on
zi,m,t+1, which operates both directly and via changes in yimt. Formally,

d ln(CAi,m,t+1)

d ln(CAimt)
=

d ln(zimt)

d ln(CAimt)
(
d ln(zi,m,t+1)

d ln(zimt)

d ln(CAi,m,t+1)

d ln(zi,m,t+1)
+
d ln(yimt)

d ln(zimt)

d ln(zi,m,t+1)

d ln(yimt)

d ln(CAi,m,t+1)

d ln(zi,m,t+1)
)

(55)

27That is, given the fact that, for any given specification of date-t labor usage in each industry and
occupation, the percent change in productivity from date t to t+1 from learning-by-doing does not depend
on the date-t level of producivity φijmt.

28Note that I am assuming here that zim − the parameter governing country m’s average TFP in industry
i − does not change over time. For the purpose of this characterization of the link between learning-by-
doing and dynamics of comparative advantage, this assumption is WLOG: suppose, to the contrary, that
zim were changing over time, and suppose, to take the most extreme example, that φijmt were not changing
over time. This would be isomorphic to zim staying the same over time while φijmt changes, with φijmt
changing at the same rate for each occupation within each industry.

42



We will compute each of these derivatives in turn. In order to do so, first note that,
under the simplifying assumptions made in Section ??29, the equilibrium value (in quantity
terms) of country m’s total production of industry i at date t is equal to

yimt = (
1

I
)

(wmt)
−θ−1(zimt)

θ+1∑N
m′=1(wm′t)−θ(zim′t)θ

(56)

Taking a first-order log-linear approximation of yimt:

ln(yimt) ≈ ln(
1

I
)+(−θ−1) ln(wmt)+(θ+1) ln(zimt)−ln(N)+

N∑
m′=1

(
1

N
)[θ ln(wm′t)−θ ln(zim′t)]

(57)
And a first-order log-linear approximation of country m’s equilibrium wage30 is

ln(wmt) ≈ (
1

1 + θ
) ln(I) + (

1

1 + θ
)

I∑
i=1

(
1

I
)θ ln(zimt) (58)

We are now ready to compute the derivatives in equation (55). From the definition of
comparative advantage (equation (41)), we have

d ln(zimt)

d ln(CAimt)
=
d ln(CAi,m,t+1)

d ln(zi,m,t+1)
= 1 (59)

From the learning-by-doing equation (equation (40)) we have

d ln(zi,m,t+1)

d ln(zimt)
= 1 (60)

and

d ln(zi,m,t+1)

d ln(yimt)
= ρ (61)

From equation (57) we have

d ln(yimt)

d ln(zimt)
≈ (1 + θ)(1− d ln(wmt)

d ln(zimt)
) (62)

From equation (58) we have

29Recall that these simplifying assumptions are that trade costs are zero, the size of the labor force in
each country is equal to 1, and each country’s representative household’s utility function puts equal weight
on each industry.

30The derivation of this approximation is available upon request. This expression for the equilibrium
wage holds exactly in the case of complete symmetry across countries and industries (and, as mentioned
above, zero trade costs), but only holds as a first-order approximation outside of it. In the case of only one
industry, this reduces to the closed-form solution to the Eaton and Kortum (2002) model with zero trade
costs provided by Alvarez and Lucas (2007).
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d ln(wmt)

d ln(zimt)
≈ (

1

I
)(

θ

1 + θ
) (63)

Combining equations (59), (60), (61), (62), and (63) gives us

d ln(CAi,m,t+1)

d ln(CAimt)
≈ 1 + ρ(1 + [

I − 1

I
]θ) (64)

This proves the proposition. �

B Tables and figures

Table 6: List of countries in sample

Morocco Malaysia
Tunisia Pakistan
Nigeria Philippines
Canada Singapore
USA Thailand
Argentina Taiwan
Brazil Belgium and Luxembourg
Chile Denmark
Colombia France and Monaco
Ecuador Greece
Mexico Ireland
Peru Italy
Venezuela Netherlands
Israel Portugal
Japan Spain
Turkey UK
China, Hong Kong, and S.A.R.’s Norway
South Korea Sweden

Switzerland and Lichtenstein
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Table 7: List of industries in sample

NAICS Industry NAICS Industry

311 Food Manufacturing 325 Chemical Manufacturing
312 Beverages and Tobacco Products 326 Plastics and Rubber Products
313 Textile Mills 327 Nonmetallic Mineral Products
314 Textile Product Mills 331 Primary Metal Manufacturing
315 Apparel Manufacturing 332 Fabricated Metal Products
316 Leather and Allied Products 333 Machinery
321 Wood Products 334 Computers and Electronic Products
322 Paper Manufacturing 335 Electrical Equipment and Appliances
323 Printing and Related Activities 336 Transportation Equipment
324 Petroleum and Coal Products 339 Miscellaneous Manufacturing

Table 8: List of occupations in sample

SOC code Occupation

11 Management Occupations
13 Business and Financial Operations Occupations
15 Computer and Mathematical Occupations
17 Architecture and Engineering Occupations
19 Life, Physical, and Social Science Occupations
21 Community and Social Services Occupations
23 Legal Occupations
25 Education, Training, and Library Occupations
27 Arts, Design, Entertainment, Sports, and Media Occupations
29 Healthcare Practitioners and Technical Occupations
31 Healthcare Support Occupations
33 Protective Service Occupations
35 Food Preparation and Serving Related Occupations
37 Building and Grounds Cleaning and Maintenance Occupations
39 Personal Care and Service Occupations
41 Sales and Related Occupations
43 Office and Administrative Support Occupations
45 Farming, Fishing, and Forestry Occupations
47 Construction and Extraction Occupations
49 Installation, Maintenance, and Repair Occupations
51 Production Occupations
53 Transportation and Material Moving Occupations
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Histogram of ρ̂ across subsamples of countries and industries

Figure 5: This graph plots the distribution of the ρ̂ that solves minimization problem (46), across 1000
random subsamples of 22 countries and 10 industries, for the time period 1960’s to 1970’s.
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Histogram of σ̂ across subsamples of countries and industries

Figure 6: This graph plots the distribution of the σ̂ that solves minimization problem (46), across 1000
random subsamples of 22 countries and 10 industries, for the time period 1960’s to 1970’s.
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Figure 7: Percent increase in China’s GDP, given 10% increase in industry-i productivity.

Table 9: Bonacich centrality of each industry in network of occupational learning diffusion

Industry Bonacich Centrality
Electrical Equipment 2.03

Transportation Equipment 2.03
Primary Metals 2.12

Textiles 2.22
Misc. Manufacturing 2.02

Paper 2.07
Machinery 2.04

Plastics 2.16
Apparel 2.25

Electronics 1.63
Fabricated Metals 2.17

Printing 2.04
Minerals 1.86

Food 1.87
Chemicals 1.83

Petroleum/Coal Products 1.85
Wood Products 2.03
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