Abstract

It is important to understand the factors that influence a country’s transition from the production of low-quality to high-quality products since the production of high-quality goods is often viewed as a pre-condition for export success and, ultimately, for economic development. In this paper, we provide the first evidence that countries’ import tariffs affect the rate at which they upgrade the quality of their products. We analyze the effect of import competition on quality upgrading using highly disaggregated export data to the U.S. from fifty-six countries in 10,000 products using a novel approach to measure quality. As predicted by recent distance to the frontier models, we find that lower tariffs are associated with quality upgrading for products close to the world quality frontier, whereas lower tariffs discourage quality upgrading for products distant from the frontier.

Keywords: Quality Upgrading, Competition, Proximity to Frontier, Growth

JEL classification: F1
1. Introduction

There is substantial evidence to suggest that firms in high income countries produce and export higher quality goods than those in less-developed nations (e.g., Schott 2004, Hummels and Klenow 2005, Hallak 2006). While these studies inform our understanding of the determinants of quality within a cross-section, they do not examine how countries transition from the production of low-quality to high-quality products. This question is important, since the production of high quality products is often viewed as a pre-condition for export success and, ultimately, for economic development (Kremer 1993, Grossman and Helpman 1991). In this paper, we provide the first evidence that import tariffs in the importing country affect the rate at which they upgrade the quality of their products.

We analyze the effect of import competition on quality upgrading using highly disaggregated data on exports to the U.S. from fifty-six countries in 10,000 products. We infer the quality of these products using a novel approach developed in Khandelwal (forthcoming). In contrast to previous approaches that use unit values as proxies for quality, we estimate quality using both prices and quantity information, where, conditional on price, higher quality is assigned to products with higher market shares. This approach has the advantage of accounting for differences in quality-adjusted manufacturing costs (e.g., wages) that could explain variation in prices. We match these quality estimates to detailed import tariff data for the countries’ home markets. The tariffs provide a measure of the import competition in these countries.

To guide our empirical analysis, we draw on the theoretical literature in industrial organization that analyzes competition and innovation.\(^1\) Although both competition and innovation are much broader concepts than the focus of our analysis, quality upgrading is one important element of innovation, and trade liberalization is one policy tool that stimulates competition in product markets. For example, according to widespread evidence, tariff reductions lead to pro-competitive pressures in the liberalizing countries that result in both resource reallocation and lower markups.\(^2\) We draw on models by Aghion and Howitt (2005), Aghion, Bloom, Blundell, Griffith, and Howitt (henceforth, ABBGH, 2005), and Aghion, Blundell, Griffith, Howitt, and Prantil (henceforth, ABGHP, 2009) that allow the relationship between competition and innovation to depend on the distance of the product to the world technology frontier.\(^3\) These models highlight two forces. First, for firms far from the technology frontier, an increase in competition reduces incentives to innovate.

\(^1\)Recent work by Verhoogen (2008) and Bustos (forthcoming) provide theoretical and empirical evidence that access to destination markets increases the incentive for firms to improve the quality of their products. Since our context focuses on the impact of competition within a country’s home market, we turn to models by Aghion and coauthors.

\(^2\)For instance, see Levinsohn (1993), Pavcnik (2002), Konings and Vandenbussche (2005), and the comprehensive survey article by Tybout (2003).

\(^3\)Hausmann and Rodrik (2003) and Acemoglu, Aghion, and Zilibotti (2006) also show that policies that initially facilitate growth could in fact inhibit growth at later stages of economic development.
because ex post rents from innovation are eroded by new entrants as in Schumpeter’s appropriability argument. As firms approach the frontier, however, competition can increase incentives to innovate because it reduces firms’ pre-innovation rents by more than it reduces their post-innovation rents. We refer to this force as the escape competition effect. These models, therefore, nest predictions of both positive and negative effects of competition on the innovative activity of firms.4

The empirical strategy we adopt examines the relationship between the change in quality of products over five-year intervals and the five-year lagged tariff levels across many countries between 1990 and 2005. The high level of disaggregation of both the tariff and the quality measures allow us to isolate the effects of import tariffs from other factors that could potentially affect quality. We include product-year fixed effects to account for product-specific productivity shocks or changes in consumer demand, and we include country-year fixed effects to account for changes in countries’ relative endowments of skilled workers or changes in countries’ institutional structures. To assess the nonmonotonic relationship hypothesized in recent theories, we allow the relationship between tariffs and quality upgrading to depend on the proximity of the product to the world quality frontier.

Our analysis generates a number of new findings. One, we demonstrate the importance of including controls for country-specific variables that could be correlated with import tariffs. In a linear specification between quality change and tariffs, we show that omitting country-year fixed effects flips the sign on the tariff coefficient and can therefore lead to incorrect conclusions about the association between these two variables. With the controls, we find a negative relationship between tariffs and quality upgrading, which suggests that lower tariffs result in faster quality upgrading.5 Two, we provide strong evidence in support of a nonmonotonic relationship. We show that low import tariffs promote quality upgrading of products that are initially close to the world technology frontier, whereas lower tariffs discourage quality upgrading of products that are distant from the world frontier. Three, we find that this nonmonotonic relationship holds across countries that span a wide income distribution, provided that the country has reached a minimum level of institutional quality.6 This result is intuitive, given that, in countries with multi-dimensional sources of market frictions, changes in import tariffs are likely to have limited effects on the competitive

4Hart (1983) argues, for instance, that competition will reduce managerial slack, while Schumpeter (1943) suggests the appropriability effect would reduce incentives to innovate. These models suggest behavioral changes within firms. Heterogeneous firm models based on Melitz (2003) also suggest that average export quality could rise in response to trade liberalization because the less-productive (or low-quality) firms are driven out of the market. While selection may be one mechanism, we note that it cannot explain the non-monotonic results that we find, which are consistent with the models by Aghion and coauthors.

5That is, without the additional controls one would conclude support for Shumpeterian models while with the controls, the results are supportive of the pro-competitive models, such as Hart (1983) or Melitz (2003).

6As discussed in more detailed below, we rely on the World Bank’s Doing Business Report to infer a country’s business climate.
pressures faced by domestic firms. Thus, the results suggest that a minimum institutional “quality” may be needed for the mechanisms of the model to operate. The results are robust to specifications that deal with potential endogeneity concerns regarding the tariffs, including using worldwide export growth as a proxy for productivity shocks and using the end of the Multifiber Arrangement (MFA) in 2005 as a natural experiment which resulted in shocks to certain textile and clothing products in which China had binding quotas.

Our paper builds on and contributes to a number of literatures. The international trade literature on quality has established that improved market access can promote quality upgrading. Verhoogen (2008) shows that exporters upgraded quality in response to a currency depreciation in Mexico, while Bustos (forthcoming) finds that a regional free-trade agreement lead Argentine firms to invest in new technologies. Both papers have identified an important channel that affects quality upgrading, but neither of the papers focuses on the competition mechanism at the core of our analysis. The international trade literature on tariffs and productivity has shown a positive relationship between tariffs and total factor productivity (see Pavcnik (2002) and Topalova (2007) for firm-level studies within countries, and Romalis (2007) for a cross-country analysis). In our paper, we focus on quality upgrading, which may be viewed as a specific component of TFP, and for the first time allow for the potential nonmonotonic relationship to depend on the proximity to the world quality frontier using tariffs as the competition measure. Our results highlight that the distance from the world frontier is important for understanding a country’s performance following trade liberalization.

Our paper is also related to studies in industrial organization that examine the relationship between competition, such as foreign entry or regulation, on related but distinct outcomes, such as research and development, patents, or total factor productivity. These studies have found support for the hypothesized nonmonotonic relationship, either using aggregate cross-country analysis (Vandenbussche et al. 2004 and Acemoglu et al. 2006), or industry studies within one country (e.g., ABBGH 2005, ABGHP (2009)). Our paper differs from these studies in a number of ways. First, the various competition measures (e.g., delicensing, FDI policy, Lerner indices) and outcome measures (e.g., patents, citations, TFP, etc) used across these studies make it difficult to draw general conclusions. Here, we use quality and tariff measures that are comparable over time and space, which allows us to make comparisons across countries. Moreover, because of the high level of disaggregation, we can maintain the advantages of industry-level studies, which can better isolate how changes in economic environments affect outcomes, while maintaining a broad set of countries that span the income distribution.

The remainder of the paper is as follows. In Section 2, we describe the distance to frontier

\footnote{A related recent paper by Teshima (2008) finds that lower tariffs increase research and development spending that reduces costs in Mexico.}
models that serve as the basis for our empirical specification. In Section 3, we outline our empirical strategy and the methodology used to infer product quality. In Section 4, we present the results, and in Section 5, we conclude.

2. Theoretical Background

Aghion and Howitt (2005) provide an overview of a number of models that analyze how competition affects innovation, which we will draw on for our empirical analysis. The key insight behind these models is that the relationship hinges critically on the incumbents’ position relative to the world technology frontier. The basic intuition behind this class of models can be illustrated using one of the simpler models in ABGHP(2009). The model assumes there are two firms capable of producing an innovation for each intermediate input under Bertrand competition. In each period and in each of the intermediate sectors, there is a potential entrant who can pay an entry cost to enter. If entry occurs, it takes place at the frontier; the entrant captures the entire market and becomes the new leading firm. Because the entrant observes the post-innovation technology, it would not pay the entry cost if the incumbent was at the frontier after innovation since Bertrand competition would drive profits to zero. The incumbent laggard never invests in innovation because at best it would catch up to its rival and earn zero profits. In this model, the cost of entry is an exogenous parameter that determines the extent of competition faced by the incumbents.

ABGHP show that increasing competition reduces innovation if the firm is far from the frontier because of a “discouragement” or “appropriability” effect. That is, firms far from the frontier know they cannot survive increased competition even if they successfully innovate. As a result, any policies that promote competition (e.g., lowering the entry cost) will discourage these lagging firms from spending resources on innovation. In contrast, policies that increase the threat of competition stimulate innovative activity for firms at the technology frontier. The reason is that successful innovation enables the incumbent leader to escape from the the threat of entry. ABGHP refer to this as the “escape-entry” effect. That is, leading incumbent firms can avoid losses that would result from increased competition by successful innovation. Thus, the implications of the model are that the relationship between innovation and competition will depend, in a nonmonotonic way, on firms’ proximity to the world technology frontier:

\[
\text{innovation} = f(\text{competition, proximity to the frontier}).
\] (1)

The assumptions can vary across these models. For example, the model in AHHV (2001) does not feature entry but instead focuses on the incentives to innovate among existing firms as product market competition (e.g., through anti-trust policy) changes. Nevertheless, the core insight that generates the nonmonotonic hypotheses is a distinct feature of this class of models that we use to guide our empirical specification.
3. Empirical Specification

We explore whether the nonmonotonic relationship hypothesized between competition and innovation holds for import competition and quality upgrading. We begin by describing both measures used in the analysis.

3.1. Import Competition

To measure a country’s import competition, we collect disaggregated import tariffs for each country in our sample. The tariff data are obtained from WITS and are specified at the HS 6-digit level and over time. That is, we measure the import competition faced by an HS6 industry in South Korea by South Korea’s tariffs on imports in that industry. The advantage of using tariffs as our measure for competition within a country is that they are readily available at a disaggregated level and comparable across countries and time. Importantly, there is widespread evidence that tariff reductions result in pro-competitive pressures in the liberalizing countries which result in both a reallocation of resources towards more competitive firms and exit of inefficient firms, and a reduction in mark-ups.

3.2. Quality

We measure a product’s quality - one element of innovative activity - using an approach developed in Khandelwal (forthcoming) using export data to the United States. We rely on a country’s exports to the United States rather than its production to infer quality because the trade data are available at a highly disaggregate level, which is important for our analysis, and because these data are comparable across countries and time. We are likely to capture the highest quality products within a country given the evidence that exporting firms tend to be more productive, employ higher skilled workers, more likely to obtain International Organization Standard (ISO) certifications, and produce higher unit value products relative to nonexporters (e.g., see Bernard et al. 2007, Verhoogen 2008, Kugler and Verhoogen 2008). There is also evidence that higher unit value goods are exported to higher income countries (e.g., see Hallak 2006, Bastos and Silva 2009, and Manova and Zhang 2009), and so exports to the U.S. are likely to be among the highest quality products.

8Nontariff barriers also affect import competition, but these data are notoriously difficult to obtain across all countries and over time. Some countries, particularly China and Mexico, rely on export processing zones where firms receive special exemptions, such as duty free imports of intermediate inputs. The presence of such export processing zones is likely to lead to a downward bias on the tariff coefficient. We demonstrate that the magnitudes are larger for the group of OECD countries, where export zones are less prevalent, and we include robustness checks that control for tariffs on intermediate inputs.

9For instance, see Levinsohn (1993), Pavcnik (2002), Konings and Vandenbussche (2005), and the comprehensive survey article by Tybout (2003).
3.3. Methodology for Measuring Quality

Following Khandelwal (forthcoming), we use a procedure to estimate a product’s quality from both export prices and market share information. This is in contrast to the literature in international trade that often uses prices or unit values (value divided by quantity) as a proxy for quality (e.g., Schott 2004, Hallak 2006). The obvious advantage of using unit values is that they are easily calculated in the trade data. However, if products possess both vertical (e.g., comfort) and horizontal (e.g., style) attributes, unit values may be inappropriate proxies for quality. For example, consider women’s trousers, defined at the HS 10-digit level (HS 6204624020), exported to the U.S. in 2005 by India and Venezuela. The unit values (inclusive of transportation and tariff costs) associated with these imports were $140 and $163, respectively. Under the price-equals-quality assumption, Venezuelan trousers would be assigned higher quality. However, the income per capita of Venezuela exceeds India’s by ten-fold and so it is possible that the differences in unit values also reflect, in part, the wage differential. Our measure of quality also takes into account differences in market shares; thus for two products with identical unit values, the product with a higher market share is assigned higher quality (how much higher quality depends, as seen below, on the slope of the demand schedule). Indeed, India exported over 1 million units more than Venezuela; and after accounting for these differences in market shares, the methodology described below assigns a higher quality to Indian trousers, despite lower prices.

To estimate quality, we use a nested logit demand framework, based on Berry (1994). In this framework, quality is defined as the vertical component of the model and has a structural definition as the mean valuation that U.S. consumers attach to an imported product. The intuition behind this approach is that higher quality is assigned to products that have higher market shares, conditional on prices. We closely follow the set up in Khandelwal (forthcoming) and summarize the estimation procedure here.

To understand the nested logit structure, first we need to describe how the data are classified. We define products as the HS 10-digit codes, which is the most disaggregated U.S. trade data classification. A U.S. import from a country within a product is called a variety. All products can be mapped into a coarser 5-digit SITC (revision 3) classification code, which we refer to as the industry. For example, an industry may be men’s knit shirts, and within this industry, shirts are classified into products that can vary by fabric material (e.g., cotton, wool, etc.). Chinese cotton and Japanese wool shirts are examples of varieties. We use the HS 10-digit products as the nests for our application. As shown below, the nested logit allows for more plausible substitution patterns than the logit by allowing differences in the correlation among consumer preferences for varieties within a nest than for varieties across nests.

We derive the structural equation for a single SITC industry, comprising many varieties, and then estimate this equation separately for each industry (thus we suppress industry
subscripts). Consumer \(n \) has preferences for HS product \(h \) imported from country \(c \) (e.g., variety \(ch \)) at time \(t \). The consumer purchases the one variety that provides her with the highest indirect utility, given by

\[
V_{ncht} = \lambda_{1, ch} + \lambda_{2, t} + \lambda_{3, ch} = p_{ch} + \sum_{h=1}^{H} \mu_{nhdt} d_{ch} + (1 - \sigma)\epsilon_{ncht}. \tag{2}
\]

The \(\lambda \) terms represent the variety’s valuation that is common across consumers (notice that these terms are not subscripted by \(n \)). The first term, \(\lambda_{1, ch} \), is the time-invariant valuation that the consumer attaches to variety \(ch \). The second term, \(\lambda_{2, t} \), controls for secular time trends common across all varieties. The \(\lambda_{3, ch} \) term is a variety-time deviation from the fixed effect that consumers observe but that we as econometricians do not. Consequently, this last component of quality is potentially correlated with the variety’s unit value inclusive of transportation and tariff costs, \(p_{ch} \).

The horizontal component of the model is captured by the random component,

\[\sum_{h=1}^{H} \mu_{nhdt} d_{ch} + \epsilon_{ncht}. \]

The term \(\epsilon_{ncht} \) is assumed to be distributed Type-I extreme value and explains why a low-quality variety that is expensive is ever purchased. The former term interacts the common valuation that consumer \(n \) places on all varieties within product \(h \), \(\mu_{nhdt} \), with a dummy variable \(d_{ch} \) that takes a value of 1 if country \(c \)'s export lies in product \(h \). This term generates the nesting framework because it allows consumer \(n \)'s preferences to be more correlated for varieties within product \(h \) than for varieties across products.\(^{10}\) For instance, a consumer who prefers Japanese wool shirts is more likely to prefer other wool shirts rather than cotton shirts. The nested logit is designed to capture this preference structure.

An outside-variety completes the demand system. The outside option allows consumers to choose a domestically produced variety instead of any imported variety. The consumer chooses this outside option if the utility derived from the outside-variety exceeds that from purchasing any inside option. The utility of the outside-variety is given by

\[
u_{n0t} = \lambda_{1, 0} + \lambda_{2, t} + \lambda_{3, 0} = p_{0t} + \mu_{n0t} + (1 - \sigma)\epsilon_{n0t}. \tag{3}\]

The mean utility of the outside variety is normalized to zero; this normalization anchors the valuations of the inside varieties. In the context here, one can think of the outside variety as the domestic substitute for imports, and we therefore set the outside variety market share to one minus the industry’s import penetration. Note that the choice of the outside variety proxy affects the absolute growth rate of import qualities but not the

\(^{10}\)As discussed in Berry (1994), Cardell (1997) has shown that the distribution of \(\sum_{h=1}^{H} \mu_{nhdt} d_{ch} \) is the unique distribution such that if \(\epsilon \) is distributed extreme value, then the sum is also distributed type-I extreme value. The degree of within nest correlation is controlled by \(\sigma \in (0, 1] \) and is assumed to be identical across all products. As \(\sigma \) approaches one, the correlation in consumer tastes for varieties within a nest approaches one; as \(\sigma \) tends to zero, the nested logit converges to the standard logit model.
relative growth rate because our analysis includes year fixed effects that are common to all varieties. Once the outside variety market share s_{0t} is known, we can compute the industry size: $MKT_t = \sum_{ch\in h} q_{cht} \cdot \frac{1 - s_{0t}}{s_{0t}}$, where q_{cht} denotes the import quantity of variety ch. The market shares for imported varieties are then calculated as $s_{cht} = q_{cht}/MKT_t$.

The consumer chooses variety ch if $V_{ncht} > V_{nch't'}$. Under the distributional assumptions for the random component of consumer utility, Berry (1994) has shown that the demand curve from the preferences in equation (2) is

$$\ln(s_{cht}) - \ln(s_{0t}) = \lambda_{1,ch} + \lambda_{2,t} - \alpha p_{cht} + \sigma \ln(v{s_{cht}}) + \lambda_{3,cht},$$

where $v{s_{cht}}$ is variety ch’s share within product h at time t (the nest share).\(^{11}\)

Since the trade data do not record detailed characteristics of varieties, we exploit the panel dimension of the data by specifying a time-invariant component of quality ($\lambda_{1,ch}$) with variety fixed effects, and the common quality component ($\lambda_{2,t}$) with year fixed effects. The third component of quality, $\lambda_{3,cht}$, is not observed and plays the role of the estimation error.

Since $\lambda_{3,cht}$ and the nest share are potentially correlated with the variety’s price, instrumental variables are required to identify the parameters. We instrument the price with the variety’s transportation costs, which are obviously correlated with prices but may also be correlated with quality if firms ship higher-quality goods in order to lower per unit transport costs. This practice potentially raises concerns that trade costs may be correlated with a variety’s quality (Hummels and Skiba 2004). However, the exclusion restriction remains valid as long as transport costs do not affect deviations from average quality, $\lambda_{3,cht}$. In other words, if an Australian firm chooses to export higher-quality varieties to the United States because of distance, the instruments remain valid as long as shocks to transportation costs do not affect deviations from the firm’s average quality choice. Indeed, the Washington Apples phenomenon discussed in Hummels and Skiba (2004) identifies the impact of distance on prices using cross-country variation in distance rather than shocks to transport costs over time. We also include exchange rates and the interaction of distance to the United States with oil prices as additional instruments; these instruments vary at the country-year level. Finally, $v{s_{cht}}$ is also endogenous, and so we instrument this term with the number of varieties within product h and the number of varieties exported by country.

\(^{11}\)If one adopts a logit demand system, the nest share disappears from equation (4). To understand why this nest share term is important for inferring quality, consider the following example. Imagine there are two shirts—Japanese wool and Italian cotton—that are identical in every dimension (including prices) and evenly split the market. We would infer their qualities also to be equal. Now suppose an identical Chinese cotton shirt enters and the market shares for the cotton shirts are 1/4 each and the wool shirt captures the remaining 1/2. Without the nesting structure, we would infer that the quality of the Italian cotton shirt has fallen in half (since its market share has fallen while its price remains the same), even though its underlying attributes have not changed. The nested logit takes into account the correlated preferences within nests. So although the market share for the Italian cotton shirt falls, its nest share ($v{s_{cht}}$) also falls and so its inferred quality would remain unchanged.
As is frequently assumed in the discrete choice literature (e.g., see Berry, Levinsohn and Pakes 1995), the identification assumption is that entry and exit of other varieties will be correlated with \(ch \)'s share within the nest, but uncorrelated with quality shocks. This would occur in a model of monopolistic competition where all varieties are atomistic, or in an oligopoly model where entry and exit decisions occur in the first stage and Nash prices and qualities are chosen in the second stage of game.\(^{12}\)

A second issue that arises in estimating (4), first noted by Feenstra (1994) and also by Hallak and Schott (2008), is the problem of unobserved or “hidden” varieties. To understand how hidden varieties could confound the measurement of quality, suppose that the reason India exported far more women’s trousers than Venezuela was simply that India exported more unobserved twelve-digit HS varieties (for instance, more colors). If the Venezuelan and Indian varieties were identically priced with equal market share, then when aggregating to the observed ten-digit HS level, we would assign a larger market share to the Indian varieties. From equation (4), India’s estimated quality would be biased upward simply due to the hidden varieties. Drawing on standard models (e.g., Krugman 1980) that predict that the number of varieties produced is increasing in a country’s population, we use (the log of) population as an additional covariate in (4).

The demand curve that controls for the hidden-varieties problem is given by

\[
\ln(s_{cht}) - \ln(s_{0t}) = \lambda_{1,ch} + \lambda_{2,t} - \alpha p_{cht} + \sigma \ln(v s_{cht}) + \gamma \ln pop_{ct} + \lambda_{3,ch,t},
\]

where \(pop_{ct} \) is the population in country \(c \). The estimated parameters and the residual of the regression define the quality of variety \(ch \) at time \(t \) as:

\[
\lambda_{cht} = \hat{\lambda}_{1,ch} + \hat{\lambda}_{2,t} + \hat{\lambda}_{3,ch,t}.
\]

From equation (5), we see that the quality of an imported variety is defined relative to its market share after controlling for exporter size and price. More generally, our notion of quality is an attribute that allows a variety’s price to rise without it losing market share. One potential concern about this interpretation is that many factors unrelated to quality could affect market shares and therefore confound our measure of quality. However, it is important to note that this set of factors is made much smaller by conditioning on prices. For example, a variety may have a large market share if the exporting country is geographically close to the United States. However, since the price includes transportation costs the quality estimate is not capturing purely gravity effects such as distance.\(^{13}\)

\(^{12}\)We note that the validity of using a count of varieties to instrument for \(vs_{cht} \) relies on weaker assumptions than those typically made in the discrete choice literature, which typically instruments \(vs_{cht} \) with the average characteristics of varieties (e.g., Berry, Levinsohn and Pakes 1995). This practice assumes that the firms’ quality choices are fixed (or chosen before prices). Here, we only need that the number of varieties is uncorrelated with the deviation from average quality, \(\lambda_{3,ch,t} \). This will be the case in a model where entry and exit occur prior to the firms’ quality choice. For example, this occurs in models where firms choose quality in the final stage of a multi-stage game of location, price, and quality decisions (e.g., Vogel 2008).

\(^{13}\)Note that defining quality to be inclusive of a residual is analogous to the productivity literature that
3.3.1. Proximity to Frontier

We estimate equation (5) separately for each 5-digit SITC (revision 3) industry and use the estimated parameters of the regressions to define the qualities according to (6). We construct the frontier measures by first taking a monotonic transformation of the quality measures to ensure that all qualities are non-negative: \(\lambda_{cht}^F = \exp[\lambda_{cht}] \). We define a variety’s proximity to the frontier as the ratio of its (transformed) quality to the highest quality within each HS product:

\[
P_{Fcht} = \frac{\lambda_{cht}^F}{\max_{c\in I,t}(\lambda_{cht}^F)},
\]

where the max operator chooses the maximum \(\lambda_{cht}^F \) within a product-year and \(P_{Fcht} \in (0, 1] \). For varieties close to the frontier, this measure is close to one. For varieties far from the frontier, this measure is close to zero.

4. Data Description

To estimate quality, we use annual export data to the U.S. from 1990 to 2005 at the HS 10-digit level. Since unit values are notoriously noisy (GAO 1995), prior to estimating the demand systems in equation (5), we trim the data along three dimensions: we drop variety-year observations above or below the 1st and 99th percentile of unit values, exclude varieties with annual price increases of more than 200 percent or price declines of more than 66 percent, and drop varieties with export quantities of fewer than ten. The quality estimates obtained from equation (6) are also noisy and so we trim the qualities at the 5th and 95th percentiles. We also drop any observations with five-year quality growth outside the 1st and 99th percentiles. We trim along five-year growth intervals since our dependent variable below will be defined as quality growth over 5-year intervals.

We obtain six-digit HS import tariffs for fifty-six countries for 1990, 1995, and 2000 from the World Bank’s World Integrated Trade Solution (WITS) database. The sample of countries is limited by the availability of tariff data for those years. There is wide variation in the tariff levels across countries and over time. The average tariff across countries range from very low rates of 0 percent in Hong Kong and Singapore, and 5 percent in Norway to very high rates of 100 percent in Bangladesh and 63 percent in Morocco and Pakistan. Between 1990 and 2000, average tariffs for OECD countries fell from 16 percent to 12 percent, whereas for non-OECD countries they fell from 29 percent to 18 percent. The

interprets total factor productivity as the residual from conditioning output on observable inputs.

Note that separate industry regressions imply that quality cannot be compared across industries. We include appropriate fixed effects in our analysis below to account for this.

If tariff data were unavailable for a particular year, we included the data for the preceding year. Note that tariffs are common for all countries within the European Union.
world quality frontier for each product in each year is defined from the set of countries for which we have tariff data. The proximity to the frontier for each country’s products in each year is then matched to its import tariffs. Table 1 reports summary statistics of the change in quality, proximity to frontier, and tariff levels for OECD and non-OECD countries, as well as statistics for countries classified as having strong and weak business environments, high DB and low DB, which we define below. The table shows that non-OECD countries have faster quality growth than OECD countries, and higher rates of protection. The table also shows that non-OECD countries have slightly higher proximity to frontier measures than OECD countries, but this is related to product composition. Controlling for product-year fixed effects, there is a positive and statistically significant correlation between proximity to the frontier and income per capita.

As would be expected, the quality estimates indicate that richer countries export higher quality varieties within products. Thus, on average, more advanced countries sit atop a product’s quality ladder, while developing countries are further from the frontier. The relationship between income and quality in 2005 is seen in Figure 1. The left panel of Figure 1 plots the proportion of the total number of products a country exports for which it is the quality “leader”, \(P_{F_{cht}} = 1 \), against its income per capita, showing there is a positive and statistically significant relationship. Similarly, there is a positive relationship between income and the fraction of highest-priced varieties in the right panel of the figure. Notice in this panel that the positive relationship is steeper than with the quality-based measure. Notice that China is a clear outlier; although China exported the highest-priced variety in 9 percent of products in 2005, the quality-based measure indicates that China was the leader in 44 percent of the total number of products it exported to the U.S. There are several reasons for this discrepancy. First, although China exports low-priced varieties, it has exceptionally high market shares (it has the highest quantity in 59 percent of the products it exports), particularly for labor-intensive products. That is, the procedure above yields high quality estimates for China because its market shares are larger than the predicted market shares given its price and the estimated elasticity of demand. Thus, the methodology will record higher quality for China in these products. Second, trade statistics are recorded on a total value basis rather than a value-added basis. Given the importance of processing trade for Chinese exports, its value added will vary across sectors. For example, the Apple iPod is “made in China” even though China’s value added accounts for a fraction of the production (Linden, Kraemer, and Dedrick 2007). More generally, Koopman, Wang and Wei (2008) estimate that China’s value added in computers may be as low 5 percent. If the U.S. Census

16 OECD countries include all those that joined the OECD before our sample period in 1990. Countries in our sample that joined the OECD after 1990 include Mexico in 1994, and South Korea and Poland in 1996. Taiwan is a member but cannot vote.

17 This was shown in Khandelwal (forthcoming) and is consistent with findings in the previous literature.

18 The income per capita and population variables are obtained from the the World Development Indicators database.
collected value-added trade data, China’s inferred quality would presumably be much lower. Note that in Section 5.3, we will adopt several robustness checks in our analysis, including using unit values as a proxy for quality, and excluding China from the analysis and frontier definition.

5. Quality Upgrading and Import Competition Results

With the import tariffs and quality measures in hand, we can analyze the effect of competition on quality upgrading, allowing for the discouragement and escape-competition forces. We use the following empirical specification to relate quality growth to import tariffs, proximity to the frontier, and the interaction of the two, which allows for the nonmonotonic relationship highlighted in ABGHP (2009):

\[
\Delta \ln x_{cht}^{F} = \alpha_{ht} + \alpha_{ct} + \beta_{1}PF_{cht-5} + \beta_{2}\text{tariff}_{cht-5} + \beta_{3}(PF_{cht-5} \times \text{tariff}_{cht-5}) + \varepsilon_{cht}. \tag{8}
\]

The dependent variable, \(\Delta \ln x_{cht}^{F}\), is the change in a variety’s quality between period \(t\) and \(t-5\). All the explanatory variables are in levels for the period \(t-5\). Our specification includes both product-year fixed effects (\(\alpha_{ht}\)) and country-year fixed effects (\(\alpha_{ct}\)) which are critical to the analysis. The product-year fixed effects deal with two issues. One, because the qualities are estimated separately across industries, the quality estimates are only comparable within the industry or product. Including the product-year effects ensures that the estimation only exploits the variation between comparable qualities. Two, product-year fixed effects control for shocks that are common to all varieties within a product such as demand shocks or world-wide technology shocks that could also influence quality upgrading. The country-year fixed effects sweep out country-level shocks such as technological shocks, changes in relative endowments, and changes in institutions that affect competition. Thus, this specification flexibly controls for different shocks that may be correlated with tariff changes and affect quality growth.

The ABGHP model suggest that \(\beta_{2} > 0\) and \(\beta_{3} < 0\). Thus, a fall in tariffs would spur a variety’s quality growth in subsequent periods only if the product variety is close to the world quality frontier (\(PF_{cht-5}\) close to 1); this is consistent with the escape competition effect discussed above. In contrast, if a product variety is a long way from the frontier, a fall in tariffs could reduce quality upgrading due to the discouragement effect. That is, products a long way from the frontier need high tariffs to protect rents in order to promote quality upgrading. Note that \(\beta_{1} < 0\) implies that varieties that are far from the frontier (\(PF_{cht-5}\) close to 0) experience faster quality upgrading, implying convergence in quality.

\(^{19}\) ABGHP (2009) specifies a similar estimating equation in their context.
5.1. Baseline Results

Before estimating equation (8), we first look for a monotonic relationship between competition and quality growth by regressing the growth in a variety’s quality on the home market’s import tariffs and product-year fixed effects, as in the trade and growth literature (e.g., Romalis (2007)). The first column of Table 2 shows that a fall in tariffs is associated with slower quality upgrading. However, once we include country-year fixed effects in column 2, to control for factors such as changes in a country’s relative factor endowments or technology shocks, the tariff coefficient switches sign, and is now negative, indicating that a fall in tariffs is associated with faster quality upgrading. Thus, the tables suggest that the relationship between import competition and quality upgrading may be confounded by unobservables. In particular, when country-year fixed effects are excluded, the results support the appropriability argument in Schumpeter (1943), but this finding reverses in favor of arguments related to Hart (1983) once we control for country-level changes in economic environments. These results highlight the importance of controlling for country-year effects that may be correlated with industry level competition measures such as tariffs. In all subsequent regressions, we therefore include both country-year and product-year fixed effects.

Next, we examine whether the relationship between quality upgrading and tariffs depends on a variety’s proximity to the frontier according to the baseline regression in (8). Column 3 shows there is a negative coefficient on the lag proximity to the frontier, which implies a faster catch-up for varieties far from the frontier. The positive coefficient on tariffs and the negative coefficient on the interaction of tariffs with the proximity to frontier provide support for the effects highlighted in ABGHP (2009). The negative coefficient on the interaction implies that the varieties close to the world frontier are more likely to upgrade quality in response to tougher competition in the domestic market (the escape-competition effect). And the positive coefficient on the linear tariff variable implies that tariffs are likely to have the opposite effect for varieties distant from the world frontier (the discouragement effect). Thus, the results support the theory of a nonmonotonic relationship between tariffs and quality upgrading.

In column 4, we examine heterogeneity in the discouragement and escape-competition effects by allowing for separate effects for OECD and non-OECD countries. The results hold across both groups, but the magnitudes of the tariff coefficients are much larger for OECD countries. For OECD varieties that are distant from the frontier (PF_{cht-5} close to 0), a 10 percentage-point fall in tariffs is associated with a 4.2 percent fall in quality upgrading. However, for OECD varieties close to the frontier, a fall in tariffs has the opposite effect: a 10 percentage-point fall in tariffs is associated with a 5.6 percent increase in quality upgrading. For non-OECD varieties far from the frontier, a 10 percentage-point fall in tariffs is associated with a 1.1 percent fall in quality upgrading; and for varieties close
to the frontier a 10 percentage-point fall in tariffs is associated with a 1.3 percent growth in quality.

5.2. Institutions and Quality Upgrading

The results in column 4 of Table 2 raise the question as to why there are larger quality responses in OECD countries than in non-OECD countries as tariffs change. For the effects in the theory to be present, market forces need to be able to operate. In particular, the potential for entry and exit of firms is crucial for tariffs to invoke more competition in the home market. However, nontariff barriers, bureaucratic red tape, and other entry regulations are likely to imply heterogeneity in the impact of tariffs on the competitive environment across countries. In countries with more regulation, additional domestic reforms may be needed for lower tariffs to induce further competition in the market.

We test for heterogenous effects in the tariff-frontier interaction coefficient according to institutional quality in the first column of Table 3. To assess the quality of a country’s institutions, we rely on a measure of the regulatory environment from the World Bank’s Doing Business Survey.\(^{20}\) The index ranges from 0 to 1, with a higher value indicating a better business environment. We separate countries into two groups, with \(HDB\) comprising countries with a doing business indicator greater than the median, and \(LDB\) comprising countries with a doing business indicator lower than the median.\(^{21}\) Column 1 shows that for countries with weak business environments, the magnitudes and significance on the tariff variables are much lower than for countries with strong business environments, with the coefficient on the linear tariff term insignificant.

Interestingly, the business environment indicator is picking up an effect beyond differences in income per capita. To see this, we allow for additional flexibility in the coefficients for strong and weak business environments further broken down by OECD and non-OECD countries in the middle panel of Table 3 (columns 2a and 2b). The results indicate that even non-OECD countries characterized by strong business environments display both the discouragement and the escape-competition forces (see upper panel of column 2b). Yet, for countries characterized by weak doing business indicators the coefficients on the tariff variables are insignificant on both tariff terms for both OECD countries and non-OECD countries, and the coefficient on the tariff term for non-OECD countries becomes negative (see lower panel).\(^{22}\) This result suggests that a minimum institutional “quality,” and

\(^{20}\) We construct an aggregate Doing Business Index by following the procedure outlined in World Bank (2005). The Doing Business database tracks constraints along several dimensions, including the ease of starting a business, enforcing contracts, obtaining credit, hiring and firing, etc. We compute each country’s percentile ranking for each outcome. The aggregate Doing Business measure takes the (simple) average of a country’s percentile rankings across the outcomes. A higher value indicates an environment more conducive to conducting business.

\(^{21}\) See Table 1 for the list of countries classified as above and below the median Doing Business index.

\(^{22}\) Note that there are only two countries, Greece and Portugal, in the LDB-OECD grouping. The alterna-
not simply differences in income per capita, is required for the two forces to operate. In particular, the lack of support for the models among weaker business-climate countries appears consistent with a variant on the Acemoglu, Aghion, and Zilibotti (2006) model that discusses how political economy factors can inhibit the escape-competition effect from operating (see section 5.2 of Acemoglu et al. 2006). Since countries with poorer business climates are unlikely to fit the theory, we restrict the subsequent analysis to the set of countries characterized by a relatively stronger business environment.

In column 3, we therefore reestimate equation (8) with only the sample of countries with business environments above the median. The results indicate that for varieties far from the frontier, a 10 percentage point fall in tariffs is associated with a 5.2 percent decline in quality growth, while an equivalent tariff decline for varieties close to the frontier is associated with a 3.8 percent increase in quality growth. To get a sense of the economic significance of these point estimates, we evaluate what a 10 percentage point change in tariffs implies for varieties close to the frontier and for those distant from the frontier, and compare these predicted changes to the actual change in quality for these varieties. Thus, for varieties close to the frontier \((PF > 0.9)\), the predicted mean change in quality is 3 percent, whereas the actual mean change in quality for these varieties is 13 percent. This calculation implies that a 10 percentage point change in tariffs can account for around 20 percent of the actual change in quality. An analogous calculation for varieties distant from the frontier \((PF < 0.1)\), implies that a 10 percentage point change in tariffs can account for around 10 percent of the actual change in quality.

Figure 2 provides a graphical illustration of the key results of the nonmonotonic relationship between competition and quality upgrading predicted by ABGHP (2009) for the set of countries with strong business environments, highlighting the discouragement and escape-competition effects in column 3 of Table 3. The figure plots the predicted quality growth

\[
\Delta \ln \hat{\lambda}_{cht} = \beta_1 PF_{cht-5} + \beta_2 \text{tariff}_{cht-5} + \beta_3 (PF_{cht-5} * \text{tariff}_{cht-5})
\]

against the \(PF_{cht-5}\), evaluated at the 10th (dashed line) and 90th tariff percentiles. The downward sloping lines indicate convergence in the data; varieties far from the frontier experience faster quality upgrading than those that are proximate to the frontier. The predicted quality growth line evaluated at the 90th percentile tariff (a 20 percent tariff) is a clock-wise rotation of the 10th percentile tariff (a 0 percent tariff), and this reflects the two forces. For varieties far from the frontier, moving from a high tariff to a low tariff is associated with a decrease in the rate of quality upgrading, which is consistent with the Schumpeterian discouragement effect. However, for varieties close to the frontier, moving

tive OECD group, with all current members, would add Mexico to that subgroup, which results in significant tariff terms. One explanation for this finding is that the business climate in the maquiladora region of Mexico, where the majority of Mexico’s exports to the U.S. originate, are not accurately reflected in the DB measure. More importantly, the results for all the other three groupings are unaffected by the OECD definition.
from a high to a low tariff is associated with a faster rate of quality upgrading, which illustrates the escape-competition effect.

5.3. Robustness

In the remaining tables, we check the robustness of the results. One potential concern is that the proximity variable is measured with error due to randomness or outliers of the highest quality variety. In Table 4, we demonstrate that our results are robust to alternative measures of the world frontier. In column 1, we check the sensitivity of the results by excluding varieties at the world frontier (and so exclude observations for which $PF_{cht-5} = 1$). In column 2, we drop the top 2 varieties and redefine the frontier in equation (7) using the third highest quality variety, rather than the maximum. In column 3, we redefine the frontier based on the sample of varieties exported by HDB countries. In column 4, we redefine the frontier using qualities inferred from the data set after excluding China’s exports. Recall that in Section 4, we noted that China’s export quality may be overstated because of the nature of processing trade and because the export data record export values rather than value added. To check that our results are not driven by this, we exclude China’s exports to the U.S. from the data, re-estimate quality using equation (5), and redefine the proximity to frontier measures excluding China. In column 4, we report the baseline specification using these (China-excluded) quality measures. Table 4 illustrates that the results are robust across all of these alternative measures of the world frontier.

In our final robustness check of the frontier measure, we reestimate equation (8) using unit values, the more common proxy for quality in international trade. Specifically, we define the proximity to the frontier based on how far a variety’s price is from the maximum price, and define the dependent variable as the change in log prices. Column 5 shows that the magnitudes of the coefficients are similar to our baseline estimates; for varieties close to the unit value frontier, there is a negative relationship between tariffs and subsequent price growth, and for varieties far from the frontier, there is a positive association. This result shows that the discouragement and escape competition effects appear when using prices instead of the alternative measure of quality proposed by Khandelwal (forthcoming).

In Table 5, we address issues surrounding omitted variables, endogeneity and selection. First, a potential concern is that firms are upgrading quality in response to lower tariffs on intermediate inputs rather than tariffs on final goods. As input tariffs fall, firms can access cheaper higher quality inputs, which can lead to higher quality outputs. If tariffs on intermediate inputs and final goods are correlated, this omitted variable could bias our coefficients. In column 1 of Table 5, we include input tariffs in the baseline specification and find that it has the expected negative sign, but it is insignificant. More importantly,

24We exclude observations that report unit value changes above the 99th and below the 1st percentiles.
25Interestingly, reestimating column 1 of table 5 on the countries below the median DB results in a
the significance and magnitudes of all the other variables are unaffected by the inclusion of input tariffs.

Second, there may be endogeneity concerns arising from countries possibly liberalizing their industries selectively based on forces that we are unable to observe. For instance, if countries receive productivity shocks that enable them to improve the quality of their products, pressures against liberalizing those markets may subside. To the extent that these shocks are country-specific, the country-year fixed effects will control for productivity shocks. Likewise, productivity (or demand) shocks that are common across all varieties within a product will be captured by the product-year fixed effects. However, productivity shocks could be market-industry specific. To address this concern, we include the change in a country’s total exports to the world for each HS 6-digit industry by year. The change in industry-level exports for each country is a plausible proxy for productivity shocks: higher productivity shocks are likely to be reflected in higher export growth. In column 2 of Table 5, we see that while the change in exports is positively correlated with quality upgrading, its inclusion leaves the key results unchanged. Moreover, the magnitudes are extremely close to the baseline results reported in column 3 of Table 3.

We further address potential endogeneity concerns by exploiting a specific liberalization episode: the ending of textile and clothing (T&C) quotas under the Multifiber Arrangement (MFA) in 2005. A major breakthrough in the Uruguay Round was the agreement by developed countries to end their stringent quotas on developing countries’ T&C exports. While the liberalization episode was anticipated, the quota removal was plausibly exogenous for countries that exported T&C because of the WTO mandate to end the quota regime.

In 1995, the U.S. published the HS product schedule to phase out the quotas over ten years. Brambilla, Khandelwal and Schott (2008) show that China’s T&C exports surged following MFA quota removals (it was eligible for quota removals after joining the WTO). The surge was most pronounced in the products in which China was “bound”—products in which China’s quota fill-rates exceeded 90 percent. After the quotas were removed, China’s exports of bounded products immediately increased by more than 450 percent. Brambilla et al. (2008) show that with few exceptions (notably Bangladesh and India), virtually all countries’ T&C exports to the U.S. contracted because of China’s export explosion. Thus, China’s exports following the end of the MFA represents a substantial increase in product

26 We obtain a country’s total exports to the world, by HS6, from the UN Comtrade database.
27 Nonetheless, the U.S. did reimpose quotas on China’s exports in a handful of T&C HS codes in 2006. However, the reimposition of the quotas was due to China’s export surge in 2005. The lobbying for new quotas therefore precisely reflects the substantial increase in product market competition in 2005, the last year of our sample.
28 This finding underscores the point that the quotas actually ensured market access for many countries’ textile and clothing exports.
market competition for T&C HS products, and especially in the set of products in which China was bound.

We exploit the MFA episode by restricting our analysis to the T&C products that were covered by the MFA, and we assign an indicator variable, \(B_h \), to equal one if China was subject to binding quotas in that product.\(^{29}\) Based on Brambilla et al. (2008), product market competition was the most severe in the bound products. We then estimate an analog to the baseline specification in equation (8) on the set of T&C products:

\[
\Delta \ln \lambda_{cht}^F = \alpha_{ht} + \alpha_{ct} + P_{F_{cht-5}} + \beta_2(P_{F_{cht-5}} \cdot B_h) + \varepsilon_{cht}. \tag{9}
\]

The specification in (9) regresses quality upgrading on product-year and country-year fixed effects, the lag proximity to frontier, and its interaction with \(B_h \).\(^{30}\) We again restrict the analysis to the countries defined as having a relatively stronger business climate. Since China only became eligible for quota removals after it entered the WTO in December 2001, we focus on the period from 2000 to 2005. As before, we should observe \(\beta_1 < 0 \); varieties that are far from the frontier experience faster growth due to convergence. The coefficient of interest is \(\beta_2 \) which captures the differential quality upgrading in bound and unbound products according to a variety’s \(PF \). This coefficient should be positive: varieties that are close to the frontier should experience relatively faster quality upgrading in China’s bound products. We report the results in column 3 of Table 5. Consistent with the theory and our earlier evidence, we observe that quality upgrading among high \(PF \) varieties is faster in products that faced stiffer competition over this period. We also run an additional placebo test by including the earlier periods of our sample. Since China’s exports remained constrained by quotas prior to 2000, product market competition should not have increased in the \(B \) products in 1990-95 and 1995-00. We check this placebo test by interacting \(PF \) and \(PF \cdot B \) with a PostWTO indicator that takes a value of one in period 2000-05 and a value of zero in periods 1990-95 and 1995-00. The coefficient on the triple interaction term is statistically significant implying that, as shown in the previous column, there is a differential change in quality upgrading across China’s bound and unbound products after China’s WTO entry. Moreover, there is no statistical difference between quality upgrading across products in the periods before China’s WTO entry. These findings are entirely consistent with product market competition stiffening in the bound products in the final period of our sample, but having no differential impact in the earlier years.\(^{31}\) Thus, the predictions of the model and our baseline results are verified using the MFA shock.

\(^{29}\) We choose 1991 as the year to determine whether or not China was binding in the product because this is the earliest year for which the binding quota information is available at the HS level. China was bound in 18 percent of the T&C products.

\(^{30}\) Note that because \(B_h \) is time-invariant, we are only able to identify the interaction effect.

\(^{31}\) Note that we do not report the interaction \(PF \cdot PostWTO \) in the table for readability purposes. This coefficient is insignificant which is consistent with product market competition not changing substantially in China’s unbound products when the quotas were removed.
A related concern with the baseline specification is that the coefficients on $PF_{ch,t-5}$ and $(PF_{cht-5}*\text{tariff}_{cht-5})$ might be downward biased because, all else equal, a high λ_{cht-5} implies a high $PF_{ch,t-5}$ but a low $\Delta \ln \lambda_{cht}$. Following Acemoglu, Aghion, and Zilibotti (2006), we therefore instrument $PF_{ch,t-5}$ (and the interactions) with its 5-year lag value. Column 5 of Table 5 shows that the results are robust, with the coefficients on the proximity to frontier and the interaction becoming a little smaller in magnitude (compare with column 3 of Table 3). The results are also unaffected by the inclusion of the growth in world exports in the instrumental variables estimation.

Third, an alternative source of bias could arise from selection. If a country does not export a particular product, we do not observe the quality of that good. Further, the observation is only included in the estimation if the quality is observed in both periods t and $t-5$. It is difficult to sign the selection bias since it is likely to depend on how tariffs affect entry and exit, and where the varieties are located on the PF distribution. For example, suppose lower tariffs result in a country-product pair exiting from our sample. While its quality change would be missing (the current period quality is not observed), one might expect its quality to have fallen (i.e., its quality-adjusted price rises to the point where no U.S. consumer chooses to import the variety). If the variety was already far away from the frontier, then our coefficient on tariffs (β_2) is biased downwards. If the exiting variety was close to the frontier, then the interaction coefficient (β_3) is also biased downwards implying that the estimated coefficient is "too negative". On the other hand, if lower tariffs result in more varieties entering the sample, then the selection bias implies that our coefficients are biased upwards. This is because while the quality change for entering varieties is missing (because the previous period quality is not observed), entry into our sample can be viewed as a positive change in quality. Thus, for varieties distant from the frontier, our estimate of β_2 is biased upwards (that is, it is "too positive"), while for varieties close to the frontier, the baseline estimate of β_3 is not negative enough. This makes it difficult to sign the overall bias on both coefficients due to any selection issues. Nonetheless, to address this selection issue, we implement a two-step Heckman correction. For this estimation, we use freight costs that a country would have to incur if it were to export that product. This variable plausibly affects entry and exit decisions into the U.S. export market but does not affect the change in quality. We calculate this potential freight cost by taking the freight cost of the closest neighboring country that does export that product. The first stage probit (column 6) shows that the coefficient on the freight variable is negative and significant; this suggests that higher potential freight costs reduce the probability of being in the sample. In the second stage, we include the inverse mills ratio from the first stage regression, which is significant, implying that the error terms in both regressions are correlated. However, the results in the second step (column 7) indicate that the main coefficients of interest are unchanged from the baseline specifications. Thus, our results remain robust to controlling
for potential selection biases.\footnote{The results are also robust to including tariffs and growth in world exports in the first-stage probit, but the sample is smaller because we do not have tariff information for all censored varieties.}

6. Conclusion

In this paper, we show that there is a significant relationship between import tariffs and quality upgrading. The direction of the effect depends importantly on how far the product is from the world quality frontier. For products close to the frontier, low tariffs encourage quality upgrading whereas for products distant from the frontier, low tariffs have the opposite effect, discouraging quality upgrading. The disaggregated nature of the quality and tariff measures enables us to isolate this relationship while controlling for country-year specific effects such as changes in institutions that could be correlated with industry competition measures, or product demand shocks. Our findings support the theories by Aghion and Howitt (2005) and ABGHP (2009) that highlight two forces: one, the “escape-competition” effect that induces a firm close to the frontier to invest in quality upgrading in order to survive competition from potential new entrants; and two, the “appropriability” effect that discourages firms distant from the frontier from investing in quality upgrading because they know they are too far away from the frontier to be able to compete with potential new entrants.

Our results show that support for these theories is strongest in countries with good business climates, a finding that is perhaps not surprising given that lower tariffs are unlikely to alter significantly the competitive environments in countries that face many other restrictions on competition. Interestingly, the nonmonotonic relationship between tariffs and quality upgrading holds for both OECD and non-OECD countries with strong business climates. Thus, our results suggest that a minimum institutional quality, and not simply higher income per capita, is required for the two opposing forces in AGHP to operate.

These findings also suggest that initial heterogeneity in industry characteristics is important for understanding subsequent industry performance following trade liberalizations. In particular, aggregate implications of industry-level trade models, such as Melitz (2003), may differ according to the industry’s initial distance to the world frontier. Further research on the implications of this heterogeneity may therefore be important.

References

Aghion, P., N. Bloom, R. Blundell, R. Griffith and P. Howitt (2005) “Competition and

7. Tables and Figures

<table>
<thead>
<tr>
<th>Variables</th>
<th>OECD</th>
<th>Non-OECD</th>
<th>High DB</th>
<th>Low DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔQualitycht</td>
<td>0.277</td>
<td>0.405</td>
<td>0.287</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>(1.116)</td>
<td>(1.074)</td>
<td>(1.111)</td>
<td>(1.063)</td>
</tr>
<tr>
<td>PFcht-5</td>
<td>0.508</td>
<td>0.559</td>
<td>0.520</td>
<td>0.557</td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
<td>(0.332)</td>
<td>(0.347)</td>
<td>(0.333)</td>
</tr>
<tr>
<td>Tariffcht6t-5</td>
<td>0.076</td>
<td>0.251</td>
<td>0.091</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td>(0.262)</td>
<td>(0.104)</td>
<td>(0.280)</td>
</tr>
<tr>
<td>Countries</td>
<td>20</td>
<td>36</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>Observations</td>
<td>74,053</td>
<td>57,204</td>
<td>94,274</td>
<td>36,983</td>
</tr>
</tbody>
</table>

Notes: Table reports summary statistics of changes in quality, lag proximity to frontier and lag tariffs. Mean values are reported with standard deviations in parentheses. DB refers to the World Bank’s Doing Business Report and we split countries between those above and below the median values. Countries above the median DB in our sample are: Australia*, Austria*, Belgium/Luxembourg*, Canada*, Chile, Denmark*, Finland*, France*, Germany*, Hong Kong, Ireland*, Italy*, Japan*, Malaysia, Netherlands*, New Zealand*, Nicaragua, Norway*, Poland, Singapore, South Africa, South Korea, Spain*, Sweden*, Taiwan, Thailand, Tunisia, Turkey*, and UK*. Countries below the median DB in our sample are: Argentina, Bangladesh, Brazil, China, Colombia, Costa Rica, Egypt, El Salvador, Greece*, Guatemala, Honduras, India, Indonesia, Kenya, Mexico, Morocco, Nepal, Pakistan, Paraguay, Peru, Philippines, Portugal*, Saudi Arabia, Sri Lanka, Uruguay, Venezuela, and Vietnam. Stars denote OECD countries.

Table 1: Summary Statics
Table 2: Quality Upgrading, Competition, and Distance to Frontier

<table>
<thead>
<tr>
<th>Regressors</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF$_{cht-5}$</td>
<td>-0.823 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tariff$_{c,h6,t-5}$</td>
<td>0.207 ***</td>
<td>-0.070 **</td>
<td>0.214 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.014</td>
<td>0.033</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>PF${cht-5}$ X Tariff${c,h6,t-5}$</td>
<td>-0.438 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD Indicator interacted with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF$_{cht-5}$</td>
<td>-0.737 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tariff$_{c,h6,t-5}$</td>
<td>0.416 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF${cht-5}$ X Tariff${c,h6,t-5}$</td>
<td>-0.973 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-OECD Indicator interacted with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF$_{cht-5}$</td>
<td>-0.943 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tariff$_{c,h6,t-5}$</td>
<td>0.113 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF${cht-5}$ X Tariff${c,h6,t-5}$</td>
<td>-0.241 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.051</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product-Year FEs: yes, yes, yes, yes
Country-Year FE: no, yes, yes, yes
R-squared: 0.54, 0.54, 0.58, 0.58
Observations: 131,257, 131,257, 131,257, 131,257

Notes: Table reports regression results of change in (log) quality of a variety on the lag HS6 level tariff faced in the origin country, the varieties lag proximity to frontier and the interaction. Columns 1 reports quality growth on tariffs. Columns 2 introduces country-year fixed effects. Column 2 reports the baseline specification with the interaction between proximity to frontier and tariffs. Columns 4 estimates separate coefficients for the OECD and non-OECD countries (the OECD dummy is not reported). All regressions include product-year fixed effects. Standard errors clustered by exporting country (with EU countries treated as one country because of its common trade policy). Significance * .10 ** .05 *** .01.
Table 3: Quality Upgrading, Competition, and Institutions

<table>
<thead>
<tr>
<th>Regressors</th>
<th>All Countries (1)</th>
<th>OECD Indicator interactions (2a)</th>
<th>Non-OECD Indicator interactions (2b)</th>
<th>HDB Countries Only (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries Above Median DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PF_{cht-5})</td>
<td>-0.769 ***</td>
<td>-0.739 ***</td>
<td>-0.836 ***</td>
<td>-0.810 ***</td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.021</td>
<td>0.027</td>
<td>0.019</td>
</tr>
<tr>
<td>(Tariff_{c,h6,t-5})</td>
<td>0.438 ***</td>
<td>0.420 **</td>
<td>0.413 ***</td>
<td>0.524 ***</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.167</td>
<td>0.104</td>
<td>0.094</td>
</tr>
<tr>
<td>(PF_{cht-5} \times Tariff_{c,h6,t-5})</td>
<td>-0.790 ***</td>
<td>-0.991 ***</td>
<td>-0.622 ***</td>
<td>-0.907 ***</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>0.221</td>
<td>0.130</td>
<td>0.119</td>
</tr>
<tr>
<td>Countries Below Median DB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PF_{cht-5})</td>
<td>-0.992 ***</td>
<td>-0.652 ***</td>
<td>-1.037 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.026</td>
<td>0.114</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>(Tariff_{c,h6,t-5})</td>
<td>0.033</td>
<td>0.590</td>
<td>-0.017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.058</td>
<td>0.702</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td>(PF_{cht-5} \times Tariff_{c,h6,t-5})</td>
<td>-0.121 **</td>
<td>-0.740</td>
<td>-0.051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.057</td>
<td>0.985</td>
<td>0.058</td>
<td></td>
</tr>
</tbody>
</table>

| | Product-Year FEs yes | Country-Year FEs yes | R-squared 0.58 | Observations 131,257 |
| | | | | |

Notes: Column 1 reports regression results of change in (log) quality of a variety on the lag HS6 level tariff faced in the origin country, the varieties lag proximity to frontier and the interaction, with each coefficient interacted with a dummy variable if the country is above (HDB) or below (LDB) the median Doing Business value. Panel two introduces an additional interaction if the country is an OECD country. Column 2a reports the OECD interactions and column 2b reports the non-OECD interactions; note that these coefficients are estimated in a single regression. Column 3 reports the baseline specification for just countries above the median Doing Business values. See footnote of Table 1 for a list of the country classifications. All regressions include product-year and country-year fixed effects. Standard errors clustered by exporting country (with EU countries treated as one country because of the common trade policy). Significance * .10 ** .05 *** .01.
Table 4: Alternative Proxy to Frontier Measures

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Exclude PF=1</th>
<th>Frontier Defined After Dropping Top 2 Qualities</th>
<th>Frontier Defined on HDB Countries</th>
<th>Exclude China from Quality Estimation</th>
<th>Unit Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF<sub>cht-5</sub></td>
<td>0.024</td>
<td>0.022</td>
<td>0.017</td>
<td>0.019</td>
<td>0.018</td>
</tr>
<tr>
<td>Tariff<sub>cht-6,t-5</sub></td>
<td>0.423 ***</td>
<td>0.529 ***</td>
<td>0.511 ***</td>
<td>0.424 ***</td>
<td>0.285 ***</td>
</tr>
<tr>
<td>PF<sub>cht-5</sub> X Tariff<sub>cht-6,t-5</sub></td>
<td>-0.726 ***</td>
<td>-0.774 ***</td>
<td>-0.841 ***</td>
<td>-0.883 ***</td>
<td>-0.496 ***</td>
</tr>
<tr>
<td>Product-Year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country-Year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.58</td>
<td>0.586</td>
<td>0.584</td>
<td>0.57</td>
<td>0.214</td>
</tr>
<tr>
<td>Observations</td>
<td>83,552</td>
<td>73,326</td>
<td>94,274</td>
<td>90,276</td>
<td>91,754</td>
</tr>
</tbody>
</table>

Notes: Table reports regression results of change in (log) quality of a variety on the lag HS6 level tariff faced in the origin country, the varieties lag proximity to frontier and the interaction along with additional controls. Column 1 excludes observations with a proximity to frontier equal to one. Column 2 removes the top two qualities from each product and redefines the proximity to frontier measure (that is, the third highest quality becomes the frontier). Column 3 redefines the frontier measure using just the sample of HDB countries. Column 4 uses quality measures from estimating equation (7) excluding China and then re-running the baseline regression (10). Column 5 uses unit values as the proxy for quality, and so it regresses the change in unit values on tariffs, a unit value proximity to frontier measure, and the interaction. All regressions include country-year and product-year fixed effects, and run on the set of high DB countries. Standard errors clustered by exporting country (with EU countries treated as one country because of the common tariff). Significance * .10 ** .05 *** .01.
Table 5: Robustness Checks

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Input Tariffs</th>
<th>World Export Growth</th>
<th>MFA (final period)</th>
<th>MFA (all periods)</th>
<th>IV Regression</th>
<th>1st Stage Probit</th>
<th>Heckman Selection Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PF_{cht})</td>
<td>-0.815 ***</td>
<td>-0.806 ***</td>
<td>-1.180 ***</td>
<td>-1.156 ***</td>
<td>-0.436 ***</td>
<td>-0.818 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td>0.019</td>
<td>0.057</td>
<td>0.044</td>
<td>0.036</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>(\text{Tariff}_{c,h6,t})</td>
<td>0.511 ***</td>
<td>0.487 ***</td>
<td>0.431 **</td>
<td>0.538 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>0.095</td>
<td>0.195</td>
<td>0.094</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PF_{cht} X \text{Tariff}_{c,h6,t})</td>
<td>-0.907 ***</td>
<td>-0.870 ***</td>
<td>-0.769 ***</td>
<td>-0.913 ***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.121</td>
<td>0.121</td>
<td>0.252</td>
<td>0.119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{World Export Growth}_{c,h6,t})</td>
<td>0.047 ***</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Input Tariff}_{c,h6,t})</td>
<td>0.055</td>
<td>0.169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PF_{cht} X B_h)</td>
<td>0.267 ***</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PF_{cht} X B_h X \text{PostWTO})</td>
<td>0.219 *</td>
<td></td>
<td>0.114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Log Potential Freight}_{c,h6,t})</td>
<td>-0.097 ***</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Inverse Mills Ratio}_{c,h6,t})</td>
<td>-2.844 ***</td>
<td>0.239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Table reports regression results of change in (log) quality of a variety on the lag HS6 level tariff faced in the origin country, the varieties lag proximity to frontier and the interaction along with additional controls. Column 1 includes lag input tariffs as a control. Column 2 includes a measure of a country's HS6-level world export growth. Column 3 restricts the analysis to 2000-2005 and to products that were subject to quotas under the MFA. These products are taken from Brambilla et al. (2008). The "B" dummy that takes a value of one if China's fill rate exceeded 90 percent in 1991 for that product; fill rate information is also taken from Brambilla et al. (2008). Column 4 includes all periods and interacts PF X B with a dummy "PostWTO" that takes a value of one in the period 2000-2005. We suppress the coefficient on PF * PostWTO for readability purposes (the coefficient is not statistically significant). Column 5 instruments the lag proximity to frontier with the previous period lag PF measure (i.e., the lag-lag proximity to frontier). Using the lag-lag PF measure is why the number of observations falls. Column 6 reports the first-stage probit regression of the probability of being observed in the sample on the (log) potential freight measure, country-year fixed effects and HS2-year fixed effects. Column 7 includes the inverse mills ratio obtained from column 6 to correct for selection. All regressions (excluding column 6) include country-year and product-year fixed effects and are run on the set of high DB countries. Standard errors clustered by exporting country (with EU countries treated as one country because of the common tariff). Significance * .10 ** .05 *** .01.
Figure 1: Quality and Price Leaders

Figure 2: Predicted Quality Growth and Proximity to Frontier