
Productivity Dispersion, Import Competition, and

Specialization in Multi-product Plants

Scott Orr ∗

Sauder School of Business

University of British Columbia

January 11, 2019

Abstract

Import competition can increase plant level efficiency, as competitive pressure forces plants

to reallocate more of their resources towards their highest performing products. There has been

little empirical work directly documenting these gains, since within plant differences in quality and

productivity, and the allocation of inputs across production lines, are rarely observed. This paper

develops a flexible methodology that uses profit maximization conditions to solve for unobserved

input allocations, TFP, and quality across product lines in multi-product plants. I apply this

methodology to a panel of plants manufacturing machinery in India from 2000-2007. I emphasize

three results. First, there is substantial variation in both TFP and quality across product lines

within a given plant. Second, quality and quantity based TFP (TFPQ) are negatively correlated.

Third, increases in Chinese import competition led plants to reallocate their inputs towards higher

quality products and away from their high TFPQ products, thereby generating within plant quality

improvements, rather than productivity gains.
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1 Introduction

Quantitative estimates of the gains from trade are of first-order importance for developing trade

policy. Empirical work examining the effect of international trade on aggregate productivity has been

very successful on this front, finding that trade liberalization can lead to sizeable efficiency gains that

are straightforward to quantify.1 These efficiency gains are generally found to come from two key

sources: across firm reallocations, where high productivity firms gain market share at the expense of

low productivity firms, and within firm efficiency gains, where existing firms increase their productivity.2

Recent studies, including Eckel and Neary (2010), Bernard et al. (2011), Mayer et al. (2014) and

Mayer et al. (2016), have emphasized that trade induced efficiency gains may also be generated by within

firm reallocations. Specifically, import competition may force firms to reallocate a larger proportion of

their inputs towards their highest performing products, improving firm level efficiency. However, these

within firm reallocations can only generate significant efficiency gains if there are sizeable differences in

productivity and quality across production lines within a firm. Unfortunately, there has been very little

empirical work measuring the magnitude of within firm heterogeneity.3 This is largely because data on

multi-product firms will typically only record input use at the firm level, rather than the firm-product

level, thereby making standard approaches to productivity estimation infeasible.

In this paper, I develop a flexible methodology that identifies unobserved input allocations, TFP,

and quality across product lines in multi-product firms. This approach exploits the fact that firm-

product level prices incorporate information on within firm input use. More formally, I show that

profit maximization restrictions, combined with estimates of a firm-product level demand function,

provide enough information for prices and quantities to reveal input use across production lines. One

can then use these restrictions to estimate a firm-product level production function for multi-product

firms, generating estimates of firm-product level TFP. Since the general approach requires estimation of a

product-level demand function, I use differences in the demand residual across firm-products to estimate

product specific quality, as in Khandelwal (2010) and Amiti and Khandelwal (2013).4 Altogether, the

approach generates estimates of firm-product input use, and two dimensions of within firm heterogeneity,

TFP and quality, allowing the researcher to answer questions related to within-firm reallocations and

efficiency.

I then apply my methodology to a panel of plants manufacturing machinery in India, using data

1See Melitz and Trefler (2012) and De Loecker and Goldberg (2014) for a review of this literature.
2For the theoretical underpinnings of these across firm reallocations, see Melitz (2003). See Pavcnik (2002), Bernard

and Jensen (2004) and Trefler (2004), for empirical work documenting the existence of both across and within-firm
productivity gains.

3Some notable exceptions include Hottman et al. (2016), who examine within firm marginal cost and quality dispersion
in US retail, and Garcia-Marin and Voigtländer (2013) and Garcia-Marin and Voigtländer (2017), who estimate within-
plant TFP dispersion in Chile using a novel dataset containing information on cost shares by product line within a
plant.

4Since products with large demand residuals generate a higher level of purchases than can fully be explained by price,
by revealed preference these products must include product characteristics that consumers find more appealing. I will refer
to differences in these unobserved characteristics within a given product-code as quality variation. Note, however, that
these product characteristics can also be immaterial characteristics, such as the quantity of advertising, that nevertheless
increase quantity sold conditional on price.
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from the 2000-2007 Annual Survey of Industries (ASI). I find that around one third of the variation in

product level quality and TFP is due to within-plant variation, implying that within-firm reallocations

can indeed have sizeable efficiency effects. I further find that tariff cuts, as well as increased Chinese

import competition, led to within plant reallocations towards a plant’s highest quality products, but

away from their products with the highest quantity based TFP, or TFPQ. This is in large part because I

find that TFPQ and quality are negatively correlated. Put differently, quality is costly to produce, in the

sense that it often requires more inputs per unit of output. While these reallocations directly decrease

plant level TFPQ, increased quality specialization tends to increase revenue based TFP, or TFPR. On

net, I find that these reallocations were approximately TFPR-neutral. Hence, while I find evidence for

within-plant reallocations in response to increased import competition, these reallocations generally do

not increase plant-level productivity, but rather imply large gross changes in the composition of high

versus low quality goods within the plant.

This paper generates some of the first estimates of the impact of within-plant reallocations on

plant level efficiency, in large part because there is no standard approach for estimating productivity

in datasets containing multiple outputs produced by the same firm or plant.5 To highlight the issues

generated by multi-product firms in productivity analysis, consider a firm producing two outputs using

only labour. Suppose that a researcher observes the level of output across the two production lines,

as well as the total quantity of labour purchased by the firm. Further suppose that the researcher is

confident that both production lines are characterized by constant returns to scale. Without further

information, differences in output across production lines can either be due to differences in labour

input, or differences in unit labour requirements. As a result, productivity and differences in input use

are not separately identified.

I show that if product level prices are observed, then profit maximization restrictions can be used to

separately identify input use from productivity dispersion. For example, if the markets for each output

are characterized by perfect competition, the price of each good will equal its marginal cost. Given

constant returns to scale, this implies that the price of each good will be equal to the wage over the

unit labour requirement for that product. As a result, the ratio of output prices within the plant will be

proportional to ratio of unit labour requirements, which means that price variation reveals productivity

dispersion. One can then combine this information with the structure of the production technologies,

as well as an aggregate resource constraint, to generate four equations that uniquely pin down the four

unknowns; the two unobserved unit labour requirements, and the two unobserved labour allocations.6

While the above example imposes a number of strong assumptions (single input technologies, perfect

competition, constant returns to scale), in this paper I show that one can use profit maximization to

separately identify input allocations from within-firm productivity heterogeneity for a much wider class

5I survey some of the other approaches used in the literature in more detail in Section 2.
6More formally, since labour is the only input and production is characterized by constant returns to scale, we can

write Y j = AjLj , where j = 1, 2 indexes products within the plant, Aj is the unit labour requirement for output j, and
Lj is the quantity of labour used to produce j. This provides two equations. As long as labour is completely attributable
to each production line, this provides a third restriction, L1 + L2 = L, where L is the total quantity of observed labour.

Profit maximization and perfect competition imply that P j = w
Aj for j = 1, 2, which implies that P 1

P 2 = A2

A1 . This is the
fourth condition necessary to uniquely determine (A1, A2, L1, L2) using information on (Y 1, Y 2, P 1, P 2, L).
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of pricing models and production technologies. These include models of oligopolistic competition and

collusion, as well as more general multiple input production technologies with increasing or decreasing

returns to scale. These are new identification results that should prove useful to other researchers who

wish to estimate the productivity of multi-product firms in datasets that only contain information on

aggregate inputs.7

The identification results developed in this paper shows that one cannot ignore the demand side

of an industry when engaging in productivity analysis, if one wishes to separately identify within-firm

input use from within-firm productivity dispersion. In particular, I show that allowing firms to have

pricing power usually requires that a product-level demand function be estimated, before one can identify

within-firm input allocations.8 This is because separately identifying input allocations from productivity

will require information on demand elasticities, since one must be able to distinguish between variation

in prices due to productivity, versus variation in prices due to differences in market power.

In my empirical application, I estimate a product-level discrete/continuous choice demand system

based on Björnerstedt and Verboven (2013), under the assumption of Bertrand-Nash price competition.

This approach allows for within-plant cannibalization effects, where individual plants account for the

fact that decreasing the price of one of their product lines will tend to decrease demand for their

other products. To estimate the parameters governing this demand system, I make use of a novel

set of instrumental variables, which harness exogenous variation in input prices due to demand and

supply shocks in other output markets that use similar inputs. This new identification strategy takes

advantage of the detailed input price variation observed in my data, while avoiding the endogeneity

problems generated by the potential correlation between individual input prices and output quality.9

I further show that as long as the production function satisfies some relatively standard restrictions

consistent with much of the empirical work on productivity analysis, then one can uniquely determine

input allocations from price, quantity, and demand elasticity data, without prior knowledge of the

production function parameters. This is a useful identification result, since one can estimate within

plant input allocations before production function parameters are estimated. As a result, one can use

these estimates of plant-product level input use to directly estimate a plant-product level production

function, using standard tools from the production function estimation literature.10 This property

allows me to use all of the plants in my sample to estimate the production function, rather than using

a selected sample of single product plants as in De Loecker et al. (2016).11

7Examples of this type of data include the U.S. Census of Manufactures used in Foster et al. (2008), the Belgian
PRODCOM data used in Dhyne et al. (2017), the Canadian manufacturing data used in Baldwin and Gu (2009), the
Indian Prowess data used in Goldberg et al. (2010b) and De Loecker et al. (2016), as well as the Indian ASI data used in
this paper.

8I also show that the restrictions on the demand system necessary for identification of within-firm input allocations are
simply a variant of those required by Berry and Haile (2014) for the nonparametric identification of demand systems in
differentiated product markets. As noted in their paper, these restrictions are satisfied by almost all the demand systems
used in applied work.

9See Kugler and Verhoogen (2012) for evidence on the correlation between plant level input prices and output quality.
10See Ackerberg et al. (2007) for a review of this literature.
11Note that De Loecker et al. (2016) account for sample selection using a variant of the control function approach

described in Olley and Pakes (1996), which partly restricts the nature of selection into multi-product production. Since
my approach uses information on multi-product plants directly, I do not need these restrictions.
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Having estimated the demand and production function parameters for the Indian machinery industry,

I then examine whether import shocks lead to within-plant reallocations towards higher performing

products. Using a series of simple OLS and IV regressions, where I leverage changes in Indian tariffs in

the mid 2000s, as well as plausibly exogenous increases in Chinese exports, I find that increased import

competition is associated with reallocations towards high quality goods, but away from high TFPQ

products. This potentially counter-intuitive result is largely due to the fact that high TFPQ products

are found to be lower quality, a finding that has also been uncovered in recent papers by Jaumandreu and

Yin (2016) and Forlani et al. (2016), who estimate production and demand functions for single product

firms. Intuitively, this means that quality is costly to produce (i.e. it requires more inputs), and therefore

reallocations towards quality also generate increased costs. Decomposing the increased specialization

in quality into intensive and extensive margin effects, I find that increased quality specialization is

primarily driven by plants dropping low quality, high TFPQ varieties in response to increased import

competition.

These findings add to the empirical literature focused on trade’s impact on multi-product producers,

including Baldwin and Gu (2009), Liu (2010), Goldberg et al. (2010a), Goldberg et al. (2010b), Bernard

et al. (2011), Mayer et al. (2014), and Eckel et al. (2015), and Medina (2017). In particular, I show

that within-firm reallocations may partly explain the positive impact of import competition on quality

upgrading, a feature of the data recently explored in Amiti and Khandelwal (2013) and Medina (2017).

Moreover, these results highlight that the within-firm productivity gains from trade, emphasized by

theoretical models developed in Eckel and Neary (2010), Bernard et al. (2011), Mayer et al. (2014) and

Mayer et al. (2016), primarily operate through a quality improvement margin in this industry, where

low quality goods are more likely to be dropped in the face of increased import competition.

This paper also contributes to a growing literature on separately identifying the different sources of

firm heterogeneity, including Foster et al. (2008), Forlani et al. (2016), Jaumandreu and Yin (2016),

who focus on separately identifying demand versus supply-side heterogeneity, De Loecker and Warzynski

(2012) and De Loecker et al. (2016) who focus on separately identifying TFP and markups, Goldberg

et al. (2010a) and Goldberg et al. (2010b), who focus on identifying within-firm improvements driven

by product adding and dropping, Valmari (2016) and Garcia-Marin and Voigtländer (2017) who focus

on identifying within-firm TFP heterogeneity, and Hottman et al. (2016) who provides a framework

for separately identifying markups, quality, and marginal costs across and within firms. The approach

described in this paper provides a unified framework that identifies all of these margins of firm hetero-

geneity, including across and within-firm variation in TFP (both TFPQ and TFPR), quality, markups,

and marginal costs, while previous approaches have only developed techniques which can uncover a

subset of these different margins. One exception to this is recent work by Blum et al. (2018), who also

provide a framework to examine the various margins of firm heterogeneity, although with a slightly

different notion of demand heterogeneity than that used in this paper. In particular, their approach

uses estimated markups to provide a local linear approximation of the slope and intercept of a firm’s

demand function around equilibrium price and quantity, while I estimate a global demand function, and

recover the estimates of the demand shifters (quality) from there.
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The paper is structured as follows. In Section 2, I outline the problems generated by multi-product

firms for productivity analysis, and outline how my approach to solving these problems differs from

other methods that have previously been proposed in the literature. In Section 3, I present a general

model of industry demand and supply, and show how the structure of this model can be used to obtain

within-firm input allocations as a function of observable demand side data. I then discuss my data in

Section 4, and describe the estimation strategy I use to estimate the demand and production function

in Section 5. Section 6 presents the empirical results, and I conclude in Section 7.

2 The General Productivity Estimation Problem

2.1 The “Standard” Problem: Single Product Firms

The standard approach to measuring firm-level productivity involves estimating a firm-level produc-

tion function. For example, a typical study examining firm productivity will estimate a model of the

form:

yit = f( ~Xit) + ωit (1)

where yit is log output of firm i at time t, ~Xit is an 1 × P vector of P different input quantities, f(.)

is the log production function and ωit is firm-level log TFP.12 Note I will denote the natural log of any

variable X, by its corresponding lower case letter x, e.g. yit ≡ ln(Yit), where Yit is the level of output

produced by firm i.

Typically, it is assumed that the researcher has data on output and all of the relevant inputs at the

firm level, while the exact form f(.) takes in (1) is unknown. To obtain TFP estimates, the researcher

must determine a way to estimate the shape of the production function.

The key challenge to estimating f(.) is the endogeneity of input use, or, as described by Griliches

and Mairesse (1995), the “transmission bias” problem. Since firms know their own productivity, input

usage will tend to be correlated with ωit, which means that one cannot simply estimate (1) using OLS.

As a result, much of the literature on production function estimation is concerned with solutions to the

transmission bias problem, with some popular approaches being the proxy-variable estimation methods

described by Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015), as well

as the dynamic panel approaches described by Arellano and Bond (1991), Blundell and Bond (1998),

Blundell and Bond (2000) and Bond and Söderbom (2005).

12If yit is measured in revenue units, ωit would correspond to log TFPR, while if yit is measured in quantity units, ωit
measures log TFPQ. Note that this distinction is not important for the general identification results discussed in this and
the following section, as long as a well defined TFPR or TFPQ generating production function exists. As a result, I will
simply refer to ωit as TFP when discussing the general approach to identification.
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2.2 Complications Generated by Multi-product Production

While the transmission bias problem inherent in estimating the production function f(.) has been

widely studied, with many estimation routines available to applied researchers who wish to estimate

productivity, firm-level datasets containing multi-product firms have generated new problems that the

researcher must deal with to obtain estimates of TFP, even if f(.) were known. Specifically, most

firm-level datasets only contain information on input use at the firm-level, even if they provide output

information at the firm-product level.13 This generates significant difficulties, since if one wishes to

estimate firm-product varying TFP, one must estimate some variant of the following model

yjit = f j( ~Xj
it) + ωjit, (2)

where yjit is output of product j produced by firm i at time t, ~Xj
it is the 1× P vector of inputs used in

the production of good j, f j(.) is the production function, which may vary with j, and ωjit is the overall

productivity of good j. Unfortunately, while yjit is generally observed in most firm-level datasets, the

researcher generally only has access to data on aggregate inputs, ~Xit. As a result, all of the variables on

the right-hand side of (2) are unobserved, making standard production function estimation infeasible.

There have been, roughly speaking, two general classes of solutions to the problems posed by multi-

product firms. The first solution makes observing ~Xj
it unnecessary for productivity analysis, by redefining

the object of interest. For example, one can instead focus on simply recovering estimates of firm-level

TFP, either by creating a firm-level output index to deflate firm-level revenues, as in Eslava et al. (2004)

and Smeets and Warzynski (2013), or by making use of an explicit within-firm aggregation model that

allows one to estimate the transformation rates of outputs across uses within a firm, as in Balat et al.

(2016). While these approaches are useful for answering questions related to across-firm variation in

productivity, they by construction remain silent on within-firm productivity dispersion and allocative

efficiency.

Another approach in this vein, recently pursued by Dhyne et al. (2017), examines firm as well as

firm-product level productivity by estimating a transformation function, which is a generalization of

the production function for multi-product firms which only requires information on aggregate input

use. This approach allows for joint-production of outputs within a firm, which may allow for more

careful analysis of the sources of economies of scope. On the other hand, the approach is not well suited

for examining within-firm allocative gains, largely because the input allocation problem has already

implicitly been solved in the formulation of the transformation function, and therefore cannot be used

to consider changes in within-plant specialization.14

13Although there are some exceptions, including the data on vertically integrated Chinese steel producers used in Brandt
et al. (2017) , and the Chilean data used Garcia-Marin and Voigtländer (2013, 2017).

14Note that results from Hall (1973) imply that transformation functions that are specified to be additively separable in
inputs and ouputs, as in Dhyne et al. (2017), almost always describe non-joint production technologies, i.e. technologies
that cannot be described by a series of product line specific production functions. It is extremely difficult to capture the
notion of specialization in non-joint environments, since this framework rules out a standard input allocation problem.
See also Appendix H, which considers the relationship between transformation functions and the approach to recovering
input allocations described in this paper.
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A second solution involves using information at the firm-level to construct estimates of the within-

firm input allocations. While many authors simply use revenue shares to allocate inputs, including

Foster et al. (2008), Atalay (2014) and Collard-Wexler and De Loecker (2015), a number of recent

papers, including De Loecker et al. (2016) and Valmari (2016), have shown how one may use restrictions

on the nature of the technology and market structure to recover equilibrium input allocations.15 To

see why restrictions are necessary, note that if both ~Xj
it and ωjit are unobserved in (2), then researchers

face a significant identification problem, since increased output across production lines can be due

to both increases in productivity, which are unobserved, or increases in the quantity of inputs going

into a particular production line j, which are also unobserved. More formally, even if f j(.) is known

ex-ante, then for each multi-product firm producing Jit products, there are Jit (P + 1) unobservables

that the researcher must identify: Jit unknown ωjit terms, and Jit × P unknown input allocations.

Unfortunately, (2) only provides, at most, Jit restrictions, leaving productivity and input allocations

severely underidentified.

Hence, if the researcher wishes to separately identify input allocations from productivity, the re-

searcher must impose some restrictions on the nature of production. De Loecker et al. (2016) (hence-

forth DGKP), have recently generated some important insights to this problem, by showing that one

can separately estimate TFP and input allocations under the following key restrictions:16

• (DGKP 1): Aggregate inputs, ~Xit, are completely attributable to each production line, i.e. Xj
it =

SjXit Xit, where SjXit ∈ [0, 1] and
∑Jit

j=1 S
jX
it = 1, for any input X.

• (DGKP 2): Input shares do not vary by input, i.e. SjXit = Sjit for any input X.

• (DGKP 3): There is no within-firm TFP dispersion, i.e. ωjit = ωit for all j.

• (DGKP 4): f j(.) is known.

These restrictions imply that there are only Jit + 1 unobservables that need to be identified by the

researcher: the Jit input shares, Sjit, and the single unknown TFP term, ωit. More importantly, there

are now enough equations to pin down the remaining unknowns, since (2) provides the Jit equations

necessary to determine the input shares, while restrictions (DGKP 1) and (DGKP 2) generate the

extra equation,
∑Jit

j=1 S
j
it = 1, necessary to pin down firm-level TFP. While this requires that f j(.) be

known, DGKP accomplish by estimating f j(.) using a sample of single product firms.17 They then use∑Jit
j=1 S

j
it = 1 and (2) to solve for the unknown input share and firm-level TFP terms numerically.18

15De Loecker (2011) and Collard-Wexler and De Loecker (2015) also describe sufficient conditions for input shares to
be given by equal weights, or revenue shares, respectively, although this is not their primary focus.

16My presentation of their assumptions differs slightly from their own, since their goal is to estimate within-firm input
expenditure shares, rather than quantity shares, as expenditure shares (combined with an estimate of within-firm input
prices) are the only information needed to estimate product-level markups. Note, however, that their algorithm for
backing out the expenditure allocations can also be applied to back out the quantity allocations.

17The estimation procedure used in DGKP introduces a selection correction term that, under some further restrictions,
will consistently estimate the production function parameters.

18Note that having J + 1 equations to pin down J + 1 unknowns is only a necessary condition for identification. For
this to be sufficient, one would need to impose further restrictions on the production technology to guarantee that a
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The key advantage of using these restrictions to identify input shares and TFP, is that they do not

require any restrictions on demand or market structure. This allows researchers to investigate questions

related to competition and market power, without imposing some of the (potentially strong) restrictions

on demand and market structure, that are commonly used in empirical industrial organization studies.19

For example, DGKP combine this insight with the fact that markups can be calculated using only

production side data, as in De Loecker and Warzynski (2012), to show that trade liberalization in India

resulted in an increase in markups, due to incomplete pass-through of the costs savings generated by

input-market trade liberalization.20

Note, however, that the restriction (DGKP 3) simply rules out variation in within-firm productivity

by assumption, which is precisely the sort of within-firm heterogeneity emphasized by Eckel and Neary

(2010), Bernard et al. (2011), Mayer et al. (2014) and Mayer et al. (2016) that can lead to within-firm

allocative efficiency gains. In this paper, I develop an alternative set of restrictions that can be used

to separately identify TFP from input allocations, even in the presence of within-firm TFP dispersion.

The approach is based on a fully specified demand and supply model of production, where I show that

conditional cost-minimziation for the Jit × P , inputs combined with Jit pricing first-order conditions,

generate enough restrictions to separately identify the Jit×P input allocations from the Jit TFP terms.21

Valmari (2016) also takes advantage of pricing information to estimate within-firm input use, al-

though only under the special case of Cobb-Douglas production technologies and monopolistic pricing.

I provide a general approach to this problem, providing a series of sufficient conditions for observable

prices and quantities to reveal the unobservable equilibrium input allocations chosen by a firm. The gen-

eral approach allows for relatively general production technologies, as well as models of multi-product

firms incorporating upward pressure on prices due to cross-product cannibalization effects, as well as

some models of collusive pricing. In the subsequent section, I outline a general model of industry de-

mand and supply that includes each of these particular models as special cases, and show how to use

this class of models to identify within firm input allocations.

3 Model

This section describes a simple model of industry-level demand and supply, the structure of which can

be used to determine within-firm input allocations as a function of commonly observed firm-level data

(output quantities, prices, and aggregate inputs), and parameters to be estimated. First I describe the

basic structure of the model, including the key assumptions necessary to generate a mapping between

unique solution to this system of equations exists. However, log-linear production functions, such as the Cobb-Douglas
and translog production technologies, which are used in the vast majority of applied empirical work, will satisfy these
restrictions.

19See Ackerberg et al. (2007) for a review of some of this literature.
20In particular, while trade liberalization led to price decreases, marginal costs fell more than prices, generating an

increase in markups.
21Another way to state this is that Jit × P first-order conditions for inputs, combined with the Jit equations provided

by (2), generate all of the necessary equations to pin down the Jit (P + 1) unknowns. However, since input use will
generally depend on output, and hence price, it is generally easier to work with the Jit × P first order conditions for cost
minimization conditional on output levels, and the Jt pricing first-order conditions conditional on the cost function.

9



input allocations and observables, that does not depend on production function parameters. I then

derive this mapping, and discuss some simple examples and extensions.

3.1 Basic Environment

During each period t, a set of differentiated products, Ωt, are sold on the market by Nt firms. Each

product is produced by a particular firm i, with Yit ⊂ Ωt denoting the set of products produced by firm

i = 1, 2, ..., Nt. Each product (or variety) j ∈ Yit is produced using the following production technology:

Y j
it = exp(ωjit)F ( ~Xj

it), (3)

where Y j
it is total output of variety j ∈ Yit, ~X

j
it is the vector of inputs used in the production of j, and

ωjit the log TFP, or productivity, of variety j.

To obtain an input allocation rule that only depends on demand-side data (prices, quantities, and

demand elasticities), I require that the production function satisfy the following restrictions:

Assumption 1. F (.) is continuous and differentiable, equal to zero if any of its arguments are equal to

zero, strictly increasing in all arguments, quasi-concave, and homogeneous of degree φ > 0.

Assumption 2. The production technology differs across product lines within a firm only due to differ-

ences in ωjit, i.e. F (.) does not depend on j ∈ Yit.

While Assumption 1 mostly imposes standard regularity conditions on the production technology,

Assumption 2 requires some discussion. While restricting the shape of the production technology to

not differ across production lines within a firm may appear quite restrictive, note that in practice most

production data sets only have enough observations to feasibly estimate production function parameters

at the industry level, rather than the industry-product level. For example, Levinsohn and Petrin (2003)

only allow production function parameters to differ at the 3-digit ISIC code, while De Loecker et al.

(2016) only allow production function parameters to differ at the 2-digit NIC level. Hence, in practice,

Assumption 2 simply requires that one focus on firms that only sell products within the same industry.

Moreover, this assumption, along with a little more structure, will imply restriction (DGKP 2), i.e.

input shares do not depend on the identity of the input. This will allow me to determine an input

allocation rule that only depends on demand side data. This shall prove useful for the purpose of

estimation, since it will allow the researcher to estimate within-firm productivity dispersion in three

sequential steps. First, estimate the demand side of the model. In the second step, recover the equi-

librium input allocations. Finally, in the third step, use the estimated input allocations to estimate a

firm-product level production function.

However, as I show in Section 3.3, Assumptions 1 and 2 can both be relaxed, but at the cost

of generating an input allocation rule that depends on production function parameters. If production

technologies were already known, this would generate no additional difficulties. However, for the purpose

of estimation, this can generate significant problems, which I discuss in Section 3.3. In either case, the
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researcher should regard Assumption 2 simply as a sufficient condition for the input allocation rule to

only depend on demand side data.

While the production technology can use an arbitrary number of inputs, I will generally assume

that production may require at least one dynamic input, such as capital, which can only be obtained

through a dynamic investment process, and requires at least one static input, such as materials, that

can be purchased from the market each time period and has no dynamic implications. More formally:

Assumption 3. F (.) takes as an input at least one element from the set M, where M is set of static

inputs, which can be purchased for one-period use from the market according to some known price

schedule WM
it = WM

(∑
j∈YitM

j
it, A

M
it

)
for each M ∈M, where AMit is a vector of input price shifters.

Note that Assumption 3 allows for, but does not require, input buyers having market power, as in

Morlacco (2018), in that they recognize that buying more units of an input may affect the market price

of that input. If producers have no market power, then WM
(∑

j∈YitM
j
it, A

M
it

)
is simply a constant for

all levels of input purchases.

Similarly, I let K denote the set of dynamic inputs, which face some form of adjustment costs

at the firm-level.22 Each dynamic input K ∈ K, evolves over time according to the law of motion

Ki,t+1 = lK
(
Kit, I

K
it , I

K
i,t+1

)
, where Kit is the stock of dynamic input K in firm i at time t, and IKit is

firm i’s current investment in dynamic input K.23 Investment, as well as upkeep of the current stock

of dynamic input K, costs the firm dK(Ki,t−1, Ki,t, I
K
it ), where the stock of the dynamic input K in the

previous period is included in the dynamic cost function to allow for adjustment costs. This formulation

of the cost function allows dynamic inputs to have adjustment costs at the firm-level. To obtain an

allocation rule that only depends on demand side data, I require that there not be any adjustment costs

within a firm. In particular, I assume that:

Assumption 4. All inputs can be costlessly transferred across production lines within a firm.

Note that Assumption 4 is immediately satisfied for static inputs. For dynamic inputs, Assumption

4 simply means that given a stock Kit of dynamic input K ∈ K, each firm i can costless allocate this

resource across their production lines, with Kj
it denoting the quantity of dynamic input K ∈ K going

into production line j ∈ Yit.

Given these assumptions, it will be useful to distinguish between input allocations, which describe the

allocation of inputs across uses within a firm conditional on the aggregate resources firm i commands,

and aggregate input vectors, which correspond to total quantity of inputs used by the firm i in period

t. Formally, I will denote input allocations by the input matrix Xit, with typical element (j,X), Xj
it,

22Labour could either be a static variable, or a dynamic variable, depending on the structure of the labour market. For
example, if hiring and costs are significant, then it may be more appropriate to model labour as a dynamic variable, as I
do in my empirical application.

23Note that I allow investment at time t + 1 to affect the total stock of dynamic input K at time t + 1, but do not
require that current investment affect the total stock of the dynamic input. In particular, the case of predetermined

dynamic inputs simply corresponds to the law of motion where lK
(
Kit, I

K
it , I

K
i,t+1

)
= lK

(
Kit, I

K
it , Ĩ

K
i,t+1

)
∀IKi,t+1, Ĩ

K
i,t+1.

Note that this restriction would be satisfied by the standard law of motion Ki,t+1 = Ii,t + δKit, that is often used in the
literature. Note, however, that the identification results in this section do not require that the law of motion for capital
take this linear form, nor do they require that Kit be predetermined.
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denoting the total quantity of input X ∈ (K,M) allocated to production line j ∈ Yit. On the other

hand, I will denote aggregate input vectors by ~Xit ≡
(
~Kit, ~Mit

)
, where ~Kit is the vector dynamic input

stocks owned by firm i at time t, and ~Mit is the vector of total static inputs purchased by firm i.

To ensure that input allocations are well defined, I also make the following assumption:

Assumption 5. Aggregate inputs, ~Xit, are completely attributable to each production line, i.e. Xj
it =

SjXit Xit, where SjXit ∈ [0, 1] and
∑Jit

j=1 S
jX
it = 1, for any input X.

Note that Assumption 5 rules out public inputs, such as a machine that can be used in more than

one production processes simultaneously. This may rule out some forms of economies of scope. While

this is a standard assumption in the literature on estimating production functions with multi-product

firms, in Section 3.3 I relax this assumption. Under some restrictions on the form of public inputs,

I show that the share of effective inputs across production lines can still be identified, although the

quantity of public versus private inputs cannot. As a result, TFP estimates from multi-product firms

may be “scaled-up” due to public inputs, which, under the restrictions discussed in Section 3.3, will be

observationally equivalent to a common TFP shifter for multi-product firms. This echoes the discussion

in De Loecker et al. (2016) that Assumption 5 is compatible with some economies of scope, as long as

they are embodied in differences in TFP across firms.

I also make the following restriction on relationship between inputs and outputs:

Assumption 6. The input sets (K,M), do not contain any products produced within the same firm,

i.e. Yit /∈ (K,M)

Assumption 6 rules out vertical integration of the production process. While this may be an inter-

esting channel for thinking about productivity in some industries (e.g. Steel), the methods outlined in

this paper do not easily generalize to this case.

The next set of assumptions describe the industry structure. I assume that each product sold on the

market faces a downward sloping demand function, Qj
it(
~Pt). Note that the demand function depends on

the entire vector of prices charged on the market, ~Pt, allowing for fairly general patterns of cross-product

substitutability. Letting ~Qit(~Pt) denote the vector of demand functions, I also require that the overall

demand system satisfy the following restriction, described in more detail in Berry et al. (2013) and

Berry and Haile (2014):

Assumption 7. The demand system ~Qit(~Pt) exhibits connected substitutes in prices.

Assumption 7 is a fairly weak restriction that is satisfied by most of the demand systems used in

applied work. Roughly speaking, this restriction requires that all goods be weak substitutes for each

other (demand for each good j is non-decreasing in the price of all goods k 6= j), and some goods are

strict substitutes for one another (demand for good j is strictly increasing in the price of some subset

goods m 6= j).

Each firm then chooses their aggregate input vectors ~Xit, i.e. total labour and capital, input alloca-

tions Xit, i.e., the quantity of labour and capital in each production line, prices ~Pit, and their investment
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levels, ~Iit to maximize the present discounted value of their profits, taking into account the constraint

that sales cannot be greater than quantities produced, as well as the laws of motion for the dynamic

inputs. The Bellman equation associated with this problem is given by:24

Vt (χit) = Max
~Iit,Xit, ~Xit, ~Pit

∑
j∈Yit

P j
itQ

j
it

(
~Pt

)
−
∑
M∈M

∑
j∈Yit

WM

(∑
j∈Yit

M j
it, A

M
it

)
M j

it

−
∑
K∈K

dK(Ki,t−1, Kit, I
K
it ) + βE{Vt+1 (χi,t+1) |χit}

subject to:

exp(ωjit)F ( ~Xj
it) ≥ Y j

it = Qj
it

(
~Pt

)
∀j ∈ Yit∑

j∈Yit

Xj
it = Xit ∀X ∈ K

Ki,t+1 = lK(Kit, I
K
it , I

K
i,t+1) ∀K ∈ K,

(4)

where χit is the vector state variables, which include the set of products produced by the firm Yit, the

set of products produced by other firms Y−i,t ≡ Ωt \ Yit, the vector of firm-level TFP terms, ~ωit, the

vector of firm-level input price shifters ~Ait, the vector of prices charged by all other firm P−i,t, and the

vector of lagged stocks of dynamic inputs ~Ki,t−1.25 26

3.2 Using First-Order Conditions to Recover Input Allocations

I now show that Assumptions 1 though 7 imply a mapping from observable prices and quantities,

to the unobserved input allocations chosen by a set of firms each independently solving (4).

First, note that since dynamic inputs are costlessly transferable across uses within the firm (As-

sumption 3), and F (.) is strictly increasing in all of its inputs (Assumption 1), each firm will choose an

input allocation that minimizes total static input costs conditional on its stock of firm-level dynamic

inputs, ~Kit, and some desired set of output levels ~Yit. More formally, any solution to (4) will involve an

input allocation Xit that minimizes static input costs, subject to some desired output levels Y j
it for each

j ∈ Yit, and a given stock of dynamic inputs.27 The Lagrangian for this conditional cost minimization

24I slightly abuse notation here, letting Y jit denote the desired output quantity a firm wishes to produce. In equilibrium
this will always equal actual quantity produced through (3).

25In the special case of a pre-determined dynamic inputs, where lK
(
Kit, I

K
it , I

K
i,t+1

)
=

lK
(
Kit, I

K
it , Ĩ

K
i,t+1

)
∀IKi,t+1, Ĩ

K
i,t+1, then Kit will also be a state variable.

26Note given
(
Xit, ~Xit

)
, prices are implicitly pinned down in the above formulation of the firm’s problem by the

constraints exp(ωjit)F ( ~Xj
it) ≥ Qjit

(
~Pt

)
, which hold with equality in equilibrium. Therefore, one could also write the

problem as firms choosing prices and all static inputs except for one static input M ∈ M, although this would be
notationally cumbersome.

27Note that reallocating dynamic inputs across production lines, conditional on any level of firm-level dynamic inputs
and desired output levels Y jit, will not affect a firm’s current costs or future profits, except by allowing the firm to
potentially purchase less static inputs by reorganizing the dynamic inputs more efficiently. Hence, one can “concentrate
out” the optimal levels of static inputs in this problem, conditional on some level of dynamic inputs, by solving the
conditional cost minimization sub-problem for any given value of ( ~Kit, Y

j
it) .
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sub-problem is given by28

L =−
∑
M∈M

∑
j∈Yit

WM

(∑
j∈Yit

M j
it, A

M
it

)
M j

it +
∑
j∈Yit

λjit

(
exp

(
ωjit
)
F ( ~Xj

it)− Y
j
it

)
+
∑
K∈K

µKit

(
Kit −

∑
j∈Yit

Kj
it

)
,

(5)

where λjit is the Lagrangian multiplier for the production constraint, and µKit is the Lagrangian multiplier

for resource constraint for dynamic input K ∈ K.

Letting νXit = WX
it +

∂WX(
∑
j∈Yit

Xj
it,A

X
it )

∂(
∑
j∈Yit

Xj
it)

∑
j∈Yit X

j
it if X ∈ M, and νXit = µXit if X ∈ K, the first-order

necessary condition for any input Xj
it can be written as:

− νXit + λjit exp (ωjit)
∂F ( ~Xj

it)

∂X
= 0. (6)

To obtain a simple input allocation formula that only depends on demand side information, I make

use of the following Lemma, which shows that property (DGKP 2) from De Loecker et al. (2016) follows

from the previously stated assumptions:

Lemma 1. If Assumptions 1 through 6 hold, then there exists a solution to the firm’s conditional cost

minimization problem satisfying Xj
it = SjitXit ∀X ∈ (K,M), where Sjit ∈ [0, 1] and

∑
j∈Yit S

j
it = 1

Proof. See Appendix A.

While a formal proof of the above is provided in the Appendix for completeness sake, the intuition

for this result is a relatively straightforward implication of homogeneous production technologies. Since

homogeneous production technologies generate isoquants that have constant slopes along any ray from

the origin, this means that a cost minimizing firm will choose constant input ratios across production

lines within the firm, i.e.
Xj
it

Zjit
=

Xk
it

Zkit
for each X,Z ∈ (K,M) and each j, k ∈ Yit. This immediately

implies that the input shares within a particular production line j do not depend on the identity of the

input, and therefore
Xj
it

Xit
= Sjit ∀X ∈ (K,M).

As a result, Assumptions 1 through 6 guarantee that the vector of inputs allocated to each production

line can be written as ~Xj
it = Sjit

~Xit. Substituting this into (6), and then using the fact that all of the

partial derivatives of a homogeneous of degree φ > 0 function are homogeneous of degree φ − 1, one

obtains:

νXit = λjit exp (ωjit)
(
Sjit
)φ−1 ∂F ( ~Xit)

∂X
. (7)

To get rid of the unknown TFP terms in (7), divide this expression by Y j
it = exp

(
ωjit
)
F (Sjit

~Xit) =

exp
(
ωjit
) (
Sjit
)φ
F ( ~Xit), which yields, after some minor manipulations:

28Formal statement of the conditional cost minimization problem is stated in Appendix A.
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Sjit =
∂F ( ~Xit)

∂X

λjitY
j
it

F ( ~Xit)νXit
. (8)

One can then sum (8) over all j ∈ Yit, yielding ∂F ( ~Xit)
∂X

∑
j∈Yit

λjitY
j
it

F ( ~Xit)νXit
. Dividing (8) by this expression yields:

Sjit =
λjitY

j
it∑

k∈Yit λ
k
itY

k
it

=
MCj

itY
j
it∑

k∈YitMCk
itY

k
it

, (9)

where the second equality in (9) follows from the envelope theorem λjit =
∂C( ~Kit, ~Yit,~ωit, ~Ait)

∂Y jit
≡MCj

it, where

C
(
~Kit, ~Yit, ~ωit, ~Ait

)
is the cost function for static inputs, conditional on the level of dynamic inputs ~Kit

and a desired level of output ~Yit.
29

While (9) may not at first glance appear all that useful, as marginal costs are almost always un-

observable in any firm-level data set, the key insight that I exploit is that many models of inter-firm

competition imply a direct mapping from observable demand-side variables to unobservable product

level conditional marginal costs. This is an old insight, originally formalized by Rosse (1970) for the

case of a monopolist, who noted that one can obtain marginal costs without supply-side data using

pricing first-order conditions, since a monopolist will choose prices such that marginal revenues equal

marginal costs. Hence, one can use demand-side price and quantity data to estimate demand elasticities,

which can then be used to back out a firm’s equilibrium marginal costs from marginal revenue.

The general insight that observed demand elasticities can be used to recover marginal costs applies

to a much wider class of imperfect competition models beyond that of simple monopolists - see Berry

and Haile (2014). To see this in the context of the model described in this paper, note that once the

input allocation problem has been solved for any potential level of dynamic inputs ~Kit, and desired

output levels ~Yit, one can determine the static conditional cost function and substitute this into (4),

yielding the simplified firm’s problem:

Vt (χit) = Max
~Pit,~Iit, ~Kit

∑
j∈Yit

P j
itQ

j
it

(
~Pt

)
− C

(
~Kit, ~Qit

(
~Pt

)
, ~ωit, ~Ait

)
−
∑
K∈K

dK(Ki,t−1, Kit, I
K
it ) + βE{Vt+1 (χi,t+1) |χit}

subject to:

Ki,t+1 = lK(Kit, I
K
it , I

K
i,t+1) ∀K ∈ K,

(10)

where I have used the fact that quantity produced will equal quantity sold in equilibrium, i.e. Y j
it =

Qj
it

(
~Pt

)
.

Taking the first-order condition for any P j
it in (10) yields:

29More formally, C
(
~Kit, ~Yit, ~ωit, ~Ait

)
is the objective function associated associated with solution to (CM) in Appendix

A.
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Qj
it +

∑
k∈Yit

∂Qk
it

∂P j
it

(
P k
it −MCk

it

)
= 0. (11)

One can then stack the Jt ≡ |Ωt| first order conditions defined by (11), which, in matrix notation,

defines the following system of equations:

~Qt + ∆t

(
~Pt − ~MCt

)
= 0, (12)

where ∆t = Ot ◦ ∂t, with ∂t corresponding to an Jt × Jt matrix of demand derivatives, with typical

element (j, k) equal to
∂Qjit
∂Pkit

, and Ot being the ownership matrix, with element (j, k) equal to 1 if product

j and k are both produced by the same firm, and equal to zero otherwise.

Note that one can use (12) to solve for the equilibrium marginal costs as a function of quantities

produced, prices, and demand derivatives, by pre multiplying by ∆−1
t , yielding:

~MCt = g
(
~Qt, ~Pt, ∂t,Ot

)
= ∆−1

t
~Qt + ~Pt. (13)

For the marginal cost inversion described by (13) to be valid, ∆t needs to be invertible. Berry and

Haile (2014) have recently shown that ∆t will be invertible under fairly general conditions. In particular,

as long as Assumption 7 holds, a relatively weak restriction that is satisfied by many of the demand

systems used in applied work, then ∆t will be invertible.30

An important point worth emphasizing is that as long as Assumption 7 holds, ∆t is invertible for any

ownership matrix Ot. This means that the this marginal cost inversion is also possible under imperfect

competition with some forms of collusion. In particular, as noted by Nevo (1998), collusion between

firms can be thought of as joint-profit maximization, i.e. legally separate firms choosing their prices as if

they were one multi-product firm.31 As long as the set of colluding firms fully internalizes their pricing

decisions across products, then this simply corresponds to an alternative ownership matrix, O′t, than

that observed in the data. For example, full market collusion simply corresponds to the case where O′t
is a Jt× Jt matrix of ones, implying that all prices are chosen to internalize all possible cannibalization

effects.

Combining (13) and (9) yields the following Theorem:

Theorem 1. As long as the cost minimizing input allocation is unique, then Assumptions 1 though 7

imply that if each firm chooses prices, input quantities, and investment to solve (4), the share any input

X ∈ (K,M) going into production line j ∈ Yit satisfies Sjit =
gjit( ~Qt, ~Pt,∂t,Ot)Y

j
it∑

j∈Yit
gkit( ~Qt, ~Pt,∂t,Ot)Y kit

, where each gjit(.) is

a known function of prices, quantities, demand derivatives, and the ownership matrix.

Proof. Follows from the discussion in text and equations (9) and (13), which will always hold if there is

a unique solution to the firm’s input allocation problem, as per through Lemma 1. Note that uniqueness

30Roughly speaking, Assumption 7 is satisfied if all goods are weak substitutes for each other (demand for each good j
is non-decreasing in the price of all goods k 6= j), and some goods are strict substitutes for one another (demand for good
j strictly increases if the price of good k rises). See Berry et al. (2013) and Berry and Haile (2014) for more details.

31Note that this form of collusion requires that firms only cooperate in output markets, i.e. through pricing first-order
conditions, not through input markets, i.e. firm’s cannot engage in labour or capital sharing.
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of the input allocation problem is guaranteed for standard homogenous production functions such as

Cobb-Douglas and CES, as it is straightforward to verify that (6) implies that Xj
it = SjitXit ∀j ∈ Yit.

3.2.1 Theorem 1 In Practice: Examples

While Theorem 1 is formulated in fairly general terms, one can obtain some useful insights by

applying it to some special cases that are often used in the applied literature. For example, models of

perfect competition with price-taking firms imply that all firms choose quantities such that P j
it = MCj

it.

Substituting this into (9) yields: Sjit =
P jitY

j
it∑

k∈Yit
PkitY

k
it

, i.e the optimal input allocations are simply revenue

shares.

While perfect competition is a highly unrealistic assumption for a model where firms produce differ-

entiated varieties, note that revenue share input allocation rule will also hold whenever multiplicative

markups µjit ≡
P jit
MCjit

, are constant within a firm. Equation (9) then implies:

Sjit =

P jit
µit
Y j
it∑

k∈Yit
Pkit
µit
Y k
it

=
P j
itY

j
it∑

k∈Yit P
k
itY

k
it

if µjit = µit ∀j ∈ Yit. (14)

The fact that constant within-firm markups allows one to use revenue shares to allocate inputs, was

previously noted by Collard-Wexler and De Loecker (2015), although their derivation of this property

only proceeded after making the restriction ωjit = ωit ∀j ∈ Yit. Note that, as the derivation of (9)

makes clear, a revenue share input allocation rule will be valid with constant within-firm markups even

if there is within-firm TFP heterogeneity.

Interestingly, it turns out that equilibrium markups will be constant within a firm if variety-level

demand is CES, i.e. Qj
it(
~Pt) =

(P jit)
−σ∑Nt

l=1

∑
k∈Ylt(P

k
lt)

1−σ , even if firms are not atomistic, a property of CES

demand systems previously noted by Feenstra and Ma (2007). In particular, it is straightforward to

show the pricing first-order conditions (11) for this demand system imply the following marginal cost

inversion:32

MCj
it =

P j
it(

1 + 1
(σ−1)(1−RSit)

) ifQj
it(
~Pt) is CES, (15)

where RSit ≡
∑
j∈Yit

P jitQ
j
it∑Nt

l=1

∑
k∈Ylt

PkltQ
k
lt

is the revenue share of all products produced by firm i. Note that

as long as the number of competitors in the market is finite, so RSit > 0 for at least some i, there

will be heterogeneous markups across firms, but since RSit does not vary with j ∈ Yit, markups will

constant within firm, and therefore according to (14) input allocations will follows a simple revenue

share rule.33 Hence, in practice, if a researcher believes that demand for a particular industry can be

32Note that this marginal cost inversion also holds if the product produced have heterogeneous qualities, i.e. Qjit(
~Pt) =

(P jit)
−σ
ηjit∑Nt

l=1

∑
k∈Ylt

ηklt(Pklt)
1−σ , where ηjit is a variety specific demand shifter.

33Interestingly, note that this revenue sharing rule is valid for any ownership matrix Ot. This means that revenue
share allocations can be used with CES demand functions, even if firms are colluding, and the sets of colluding firms are
unknown.
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well approximated by CES, then no other information, besides revenue at the firm-product level, is

necessary to estimate input allocations for multi-product firms.

Note, however, that CES demand for all products is a very strong restriction. If demand is non-CES,

the allocation rule described in Theorem 1 will depend on price elasticities, which will have to be esti-

mated. For example, if there is a logit demand system for each product, Qj
it(
~Pt) =

exp(ηjit−αP
j
it)∑Nt

l=1

∑
k∈Ylt

exp(ηklt−αPklt)
,

where ηjit can be interpreted as product-specific quality, then (11) implies the following marginal cost

inversion:

MCj
it = P j

it −
1

α (1−QSit)
ifQj

it(
~Pt) is Logit, (16)

where QSit ≡
∑
j∈Yit

Qjit∑Nt
l=1

∑
k∈Ylt

Qklt
is the quantity-share of firm i.

Substituting (16) into (9), yields the following input allocation rule for simple logit demand systems:

Sjit =

(
P j
it − 1

α(1−QSit)

)
Y j
it∑

k∈Yit

(
P k
it − 1

α(1−QSit)

)
Y k
it

ifQj
it(
~Pt) is Logit. (17)

Note that the allocation rule (17) depends on the demand parameter α, which governs the own and

cross-product elasticities. Hence, to determine the input allocations from price and quantity data, the

demand parameter α must first be estimated.

In practice, researchers may wish to specify richer demand systems, such as the nested logit model of

McFadden (1978), or the random coefficients demand system described in Berry et al. (1995). These will

require estimation of more demand side parameters to determine the exact functional form (13) takes.

Whether the added computational burden associated with the estimation of richer demand systems is

appropriate will vary with the particular application a researcher has in mind. Nevertheless, note that

as long as the demand system satisfies Assumption 7, which is the case for nested logit as well as random

coefficient models, an appropriate inversion mapping will exist.

3.3 Discussion and Extensions

The key significance of Theorem 1 is that under the maintained assumptions, demand side informa-

tion (prices and quantities), can be used to infer the allocations of inputs across production lines, as

long as demand derivatives and ownership structures are known. This immediately suggests a straight-

forward strategy for estimating TFP in a dataset with multiproduct firms when prices and quantities

are observed. First, use the price and quantity data to estimate the shape of the demand function.

This is a standard problem in industrial organization, where a number of standard techniques have

been developed just for this purpose. Having estimated the demand function, the researcher can then

obtain estimates of demand derivatives at the product level, and then apply Theorem 1 to obtain the

allocations of inputs across production lines within a firm. This provides the researcher with estimates

of input use at the firm product level, which can then be used for the purpose of production function
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estimation, using standard techniques from the literature.

Before describing this approach in detail, which I turn to in Section 5, it is useful to examine the

role played by some of the stronger assumptions used in Theorem 1, and the cost of relaxing these

restrictions.

3.3.1 General Function Forms

To examine the role the functional form restrictions in Assumption 1 and 2 play, suppose instead

that Y j
it = exp

(
ωjit
)
F j( ~Xj

it), i.e. F j(.) does depend on j, and, in principal, is neither homogeneous

or quasi-concave. One can then modify (6) to allow the production function to vary with j, and then

divide this expression by Y j
it = exp

(
ωjit
)
F j( ~Xj

it) and rearrange, yielding:

Xj
it =

θj
(
~Xj
it

)
λjitY

j
it

νXit
, (18)

where θj
(
~Xj
it

)
≡ ∂F j( ~Xj

it)
∂X

Xj
it

F j( ~Xj
it)

is the output elasticity for input X ∈ (K,M). Summing (18) over all

j ∈ Yit, and dividing (18) by this new expression, yields, after using the envelope theorem and marginal

cost inversion results described in Section 3.2:

Xj
it =

θj
(
~Xj
it

)
gjit

(
~Qt, ~Pt, ∂t,Ot

)
Y j
it∑

k∈Yit θ
k
(
~Xk
it

)
gkit

(
~Qt, ~Pt, ∂t,Ot

)
Y k
it

∑
j∈Yit

Xj
it. (19)

Note that equilibrium inputs shares, if they exist, will form a fixed point of the system of equations

described by (19). If such a solution exists, note that this mapping does not depend on the unobservable

TFP terms, ωjit, implying that that input shares are separately identified from TFP if F j is known, even

if Assumptions 1 and 2 do not hold.34

Note, however, that while Assumptions 1 and 2 are unnecessary if F j(.) is known, in general the

production function must also be estimated. This severely restricts the practicality of (19) for applied

work, since, if one wishes to use multi-product firms to estimate the production function, one would have

to already know the production technology to determine their input allocations.35 Moreover, in practice,

34Note that a fixed-point is guaranteed to exist in (19) for the case of heterogeneous Cobb-Douglas production func-

tions, i.e. F j
(
~Xj
it

)
=
∏
X∈(K,M)

(
Xj
it

)βjX
. Since output elasticities are constant for each input with Cobb-Douglas, i.e.

θj
(
~Xj
it

)
= βjX , (19) simplifies to:

Xj
it =

βjXg
j
it

(
~Qt, ~Pt, ∂t,Ot

)
Y jit∑

k∈Yit β
k
Xg

k
it

(
~Qt, ~Pt, ∂t,Ot

)
Y kit

∑
j∈Yit

Xj
it, (20)

i.e. Xj
it will be known as long as the various production function parameters, demand elasticities, ownership structures,

and
∑
j∈Yit X

j
it are also known. Imposing Assumption 5 on top of this, then (20) implies that input shares SjXit ≡

Xjit
Xit

, will

generally depend on the identity of the input, i.e. SjXit 6= SjZit , which means that Assumption (2) will often be necessary
for restriction (DGKP 2) to hold.

35Note that there exist approaches to estimation that can deal with this circularity problem. For example, one could
simply estimate the production function parameters using single product firms, as in De Loecker et al. (2016), although
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most of the applied literature estimates production function by industry rather than by product, largely

due to the fact that most datasets do not have sufficient observations to calculate production functions

at the product level even if input allocations were known. Hence, for the purposes of most applied work,

I regard Assumptions 1 and 2 as relatively weak, in the sense that most work in this area implicitly

makes such assumptions, and moreover, fairly reasonable from a pragmatic point of view, as they can

allow the researcher to include multi-product producers in a straightforward and transparent manner.

3.3.2 Within-Firm Input Price Variation and Costless Input Transferability

While (19) shows that Assumptions 1 and 2 are not crucial for separately identifying TFP from

input allocations, Assumptions 3, 4, 6 and 7 are of first-order importance. In particular, Assumptions 3

and 7 are useful because they imply that static first-order conditions in prices can be used to solve for

the marginal costs, while the costless transferability of resources across production lines (Assumption 4)

and no vertically integrated production (Assumption 6) guarantee that the shadow cost of each resource,

νXit , is constant across production lines, and hence, cancels out in (19). In general, violation of these

assumptions would generate an input allocation rule that depends on further unobservables, such as

the allocation of dynamic inputs across production lines in the previous period, making identification

of input allocations a much more difficult task.36

Note, however, that the restriction that static inputs have the same price across production lines,

WM
it , which is implicit in the formulation of Assumption 3, can be easily be relaxed as long as firms only

operate Cobb-Douglas technologies, and do not have market power in input markets, i.e. WM
it does not

depend on Mit. In particular, suppose that input prices differ by production line j ∈ Yit, with W jM
it

denoting the constant price of static input M ∈M for production line j. This will change the first-order

conditions for static inputs M ∈ M in (6) to W jM
it − λ

j
it exp (ωjit)

∂F ( ~Xj
it)

∂M
= 0. It is straightforward to

show that these FOCs imply:37

M j
it

Mit

=

λjitY
j
it

W jM
it∑

k∈Yit
λkitY

k
it

WkM
it

. (21)

this approach requires potentially strong restrictions on the process governing selection into producing multiple products,
and will be less efficient as one will have to drop a large numbers of firms for estimation. Moreover, GMM based estimators
only require a set of orthogonality conditions with some set of unobservables (E.g. TFP), and these unobservables need
only be expressed as a function of data and parameters to be estimated. Hence, a GMM estimator based on orthogonality

of some instruments to TFP, could be used after substituting (19) into Y jit = exp
(
ωjit

)
F j( ~Xj

it), which would allow the

researcher to express TFP as a function of parameters to be estimated and data, as Valmari (2016) does in the case of
heterogeneous Cobb-Douglas technologies. Note, however, that this approach may suffer from identification problems,
since the model would be inherently non-linear, and therefore verification of the asymptotic identification conditions, i.e.
that the parameters to be estimated are uniquely pinned down by the assumed moment conditions, would be quite difficult
to verify in practice.

36In principal, if one had a sufficient number of firms who switched from being single product to multi-product, one
might be able to identify these adjustment costs as the lagged quantity of dynamic inputs would be observable when they
were a single product firm. I leave this problem for future research

37One obtains this expression by dividing the new FOC by Y jit = exp(ωjit)
∏
X∈(K,M)

(
Xj
it

)βX
, yielding M j

it =
βMλ

j
itY

j
it

W jX
it

.

One then sums this expression over all j ∈ Yit, dividing the previous expression by this new sum.
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One could then account for these differences in input prices across production lines using the modified

static input share formula described by (21). Note, however, that input price variation across production

lines within a plant is generally not observable. As a result, simply using the input share formula (9)

to allocate static inputs across production lines, rather than (21), will likely allocate too many inputs

to high-cost production lines, and too few inputs to low productivity production lines, which could

generate misleading estimates of within-firm productivity dispersion.

While few datasets contain information on input prices by product lines, many datasets, including

the one used in this paper, have information on plant-specific input prices. As a result, one can attempt

to deal with these potential biases by estimating within-firm input price dispersion using information

on output quality, and the input prices charged to single product firms. In particular, if one is willing

to make the assumption that across-product input price variation is primarily driven by output quality

differences and geographic location, as in De Loecker et al. (2016), then one can simply predict input

prices by estimating the following model on a subset of single-product firms:38

WM
it = Gt(Locationit, ηit) + εit, (22)

where WM
it is (observed) input prices paid by single product firm i, Locationit is the local market that

single product firm i operates within (e.g. state or county), while ηit is an estimate of product specific

input quality for single product plant i, and εit is a mean zero error term, capturing approximation error

in Gt(.), as well as other factors that determine input prices across products.

While output quality, ηit, is generally unobserved, De Loecker et al. (2016) deal with this by not-

ing that many industrial organization models imply a direct mapping from output prices, market

shares, and product codes, to unobserved product-specific quality. Thus, one can simply substitute

ηit = Ht(Pit, Sit,Codeit), where Sit denotes the market share of firm i and Codeit denotes the prod-

uct code of the output produced by firm i, into Gt(.), making estimation of (22) feasible.39 Letting

Ĝt (Locationit, Pit, Sit, Codeit) denote the predicted values from this regression, one can then predict

input price dispersion within multi-product plants using:

Ŵ jM
it = Ĝt

(
Locationit, P

j
it, S

j
it, Code

j
it

)
, (23)

where Ŵ jM
it is the predicted input price of product j ∈ Yit, and P j

it, S
j
it, and Codejit denote the prices,

market shares, and product codes of product j, respectively. Direct substitution of (23) into (21) yields

a modified static input inversion rule that accounts for within-firm input price variation. Note one can

follow this approach for any static input where input prices are observed. Hence, if one is willing to

assume labour is a static input, one can also estimate within-firm wage variation using the method

described above, adjusting the labour input shares to account for the estimated differences in labour

38Since De Loecker et al. (2016) do not actually observe input prices for any firms, they do not directly estimate a
pricing model as in (22), but rather include Gt(Locationit, ηit) as a control function in their production function estimation
algorithm.

39An alternative approach, pursued in Section 6 of this paper, is to directly estimate ηit using the structure of the
demand system. For details on the demand inversion used to estimate ηit, see Section 5.
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quality across production lines.

Note that this solution to unobserved within-firm input price dispersion is far from perfect. In

particular, (22) imposes the very strong restriction that input price variation is primarily driven by

output quality and location, rather than differences in input efficiency, i.e. the ability of an input

to produce quantities of output in shorter amounts of time or with less physical units, or firm-specific

“wedges”, such as unobserved subsidies or taxes, that have been emphasized in some of the misallocation

literature (E.g. Restuccia and Rogerson (2008), and Hsieh and Klenow (2009)). Moreover, input price

schedules need to be the same for multi-product and single-product firms, which may not be the case

if multi-product firms use very different inputs, compared to single product firms. Nevertheless, even

with these limitations in mind, since within-firm input price variation may potentially lead to biases in

the estimation of within firm price dispersion, the approach described above provides a straightforward

method to verify whether ignoring within-firm input price dispersion may be driving one’s results.40

3.3.3 Public Inputs

Finally, it is worth considering whether Assumption 5 is appropriate, i.e. all inputs are attributable

to each production line, so that Xj
it = SjXit Xit. While this assumption is made implicitly by basically all

the literature that uses input allocation rules to deal with multi-product firms, note that it is restrictive

in the sense that it rules out public inputs, which may generate economies of scope. Note, however,

that a variant of the identification result discussed in the main text carries through, even with public

inputs.

Suppose that the use of some input Xit within a firm can be divided into a public or common

component, XC
it and a rivalrous component, XR

it . Rivalrous inputs XR
it can only be allocated to a single

production line, as in Assumption 5, so that XjR
it = SjXRit XR

it with
∑

j∈Yit S
jXR
it = 1. Common inputs

are allocated to every production line automatically. Hence, the quantity of effective inputs allocated

to each production lines is given by Xj
it = XC

it +XjR
it .

Suppose further that the public component of Xit is a constant fraction of total inputs owned by

the firm, i.e. XC
it = κXXit and XR

it =
(
1− κX

)
Xit, and the production technology is Cobb-Douglas, so

that F
(
~Xj
it

)
=
∏

X∈(K,M)

(
Xj
it

)βX
. Firms will then allocate their private inputs XR

it across production

lines to minimize static production costs conditional on aggregate dynamic inputs. It is straightforward

to show, following the derivation in the text, that this slight modification implies that effective inputs

will satisfy the following:

Xj
it =

gjit (.)Y j
it∑

k∈Yit g
k
it (.)Y k

it

∑
j∈Yit

Xj
it =

gjit(.)Y
j
it∑

k∈Yit g
k
it(.)Y

k
it

(
1 + (Jit − 1)κX

)
Xit, (24)

where Jit ≡ |Yit| is the number of products produced by firm i.41

While the fractions of public inputs, κX , are unobservable, and hence the level of input useage will

40I consider this approach as a robustness check in Section 6.
41Implicitly, this derivation assumes that rivalrous inputs are chosen to be non-negative, and this constraint is not

binding, i.e. the firm does not wish to move common inputs from one production line to another.
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not be identified in this framework, note that under Cobb-Douglas, (24) implies that the unobservable

component of these input allocations, (Jit − 1)κX , are observationally equivalent to a TFP shifter

received by multiproduct firms. To see this, substitute (24) into the production function, yielding:

Y j
it = exp(ωjit + SCit)

∏
X∈(K,M)

(
X̂j
it

)βX
, (25)

where X̂j
it is the level of input useage obtained from Theorem 1, and SCit is the economies of scope

shifter, given by SCit ≡
∑

X∈(K,M) βX ln
(
1 + (Jit − 1)κX

)
.

Hence, when public inputs take this form, they are observationally equivalent to TFP shifters that

depend on the number of products produced by a firm. As a result, one can deal with the complica-

tions introduced by public inputs by controlling for the number of products in the production function

estimation routine.42

Note, however, that under these assumptions the production function residual, ω̂jit will be composed

of both a “pure” TFP component and an economy of scope shifter, SCit, i.e. ω̂jit = ωjit + SCit. This

means that multi-product firms may have higher measured TFP either due to selection, i.e. firms

with high ωjit terms are more likely to produce many products, as emphasized by Bernard et al. (2010)

and Mayer et al. (2014), or due to economies of scope, i.e. multi-product production scales up input

effectiveness due to public inputs. Since I do not know of a clean source of exogenous variation that

would randomly allocate plants across multi-product firm status, I do not attempt to separately identify

these two different mechanisms which could potentially explain a “multi-product production premium.”

Instead, I simply note that both mechanisms can be present in my data, and can lead to higher measured

TFP in multi-product firms.

4 Data

The primary data set used in this paper comes from the 2000-2007 Indian Annual Survey of Industries

(ASI), provided by by the Indian Ministry of Statistics.43 The sample frame for the survey is all

manufacturing plants in India that employ more than 10 workers. Plants with more than 100 workers

(“census” firms) are surveyed every year, while smaller plants are randomly sampled each year. The data

contains consistent plant-level identifiers across years for both census and non-census plants, allowing me

to construct plant-level panels for both types of firms.44 As described in Martin et al. (2017), the panel

42More generally, one could allow the fraction of public inputs, κX , to depend on the sets of outputs produced by the
firm, in which case one would have to include product set fixed effects.

43Years in the ASI are recorded from April 1 to March 31. While the Ministry of Statistics refers to years by the end
year, I will refer to years by the start year since the majority of production time takes place in that year. I follow this
convention when matching the data to other datasets (e.g. trade data).

44Since the unit of observation is a plant-item, rather than a firm-item, I will consider separate plants as separate firms in
my empirical analysis, and generally use these terms interchangeably. This may be problematic for my empirical strategy,
as multi-plant firms may choose prices in a coordinated way that would violate the Bertrand-Nash assumption at the
plant-level assumed by my model. Roughly speaking, this will only matter if within-firm and across-plant cannibalization
effects are large. Note, however, that many of the observations are likely to approximate the decision making unit, as
firms have the option of filing a joint return to the census for all of their factories located within the same state. 13% of
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data is fairly high quality, and covers a much larger subset of Indian producers than other comparable

datasets for the country, such as Prowess.

I focus on a single industry in my empirical application, Machinery, Equipment, and Parts, the

details of which are described in Appendix B. I focus on this industry for two reasons. First, I wish to

focus on an industry where it is appropriate to think of inputs as being directly allocated to different

production lines, as per Assumption 5. Unfortunately, this is not the case for two of India’s largest

industries, sugar and textiles, as many plants in these industries produce groups of products that are

by-products. In particular, most refined sugar producers also produce molasses, which is generated by

the refining process, while many cotton producers also produce cotton waste, a by-product of cotton

production that is often resold for further production purposes. Unfortunately, this means that Theorem

1 is unlikely to apply for these firms.45 Machinery manufacturing, on the other hand, does not generate

many by-products that are also sold on the market by the same plant, making Theorem 1 more likely

to apply.

Second, I wish to focus on industries where there are many multi-product firms, but the output

sets produced by a firm are not driven by vertical integration, as per Assumption 6. If some of the

outputs produced by a firm are also inputs in a vertically integrated production line, then Theorem 1

will not apply, as the shadow value of inputs will vary depending on where they are being allocated

along the vertical production line.46 Unfortunately, this is not the case for many other industries. After

constructing an input-output table, the details of which I describe in Appendix B, I find that more than

50% of the observed revenue in industries such as steel, food, and synthetic textiles, are produced by

multi-product firms that are potentially vertically integrated, in the sense that one of their outputs is

likely to be an input for another of their production lines. While there are many firms in the Machinery,

Equipment, and Parts industry that also produce product sets that may indicate vertical integration,

this is less of a problem than in other industries, with just over 20% of firm-year observations belonging

to firms that are potentially vertically integrated (See Table 2).47

They key variables used in this study are described in Tables 1 and 2. Each plant lists the revenues

and quantities produced and sold for up to ten different products produced within the plant. Associated

with each product entry is a 5-digit ASI Commodity Classification, or ASICC, code, with just over 1000

all the large census plant-year observations within the 2001-2008 ASI panel reported these joint returns. Hence, for plants
to approximate firms, I implicitly assume that the firms that operate plants in multiple states decentralize the pricing
decision to local managers, or that with-firm, across-plant cannibalization effects are small enough to be safely ignored.
Note that across state cannibalization effects could be safely ignored if I defined the market at the state, rather than
country level. However, since many plants may ship goods across state borders, I define the market at the country-year
level, rather than the state-year level, to allow for price competition across states.

45Note that by-products may be thought of as an extreme case of public inputs (i.e. all inputs into cotton are auto-
matically allocated to cotton waste), which my approach can be extended to handle, as discussed in Section 3.3. Note,
however, that this approach requires that public inputs enter all production lines symmetrically, which is problematic if
a multi-product firm also produces other outputs that are not by-products, e.g. jute.

46For example, labour allocated to a downstream production line will be less costly (in terms of shadow values), since if
it was instead allocated to an upstream production line, it would also be indirectly producing downstream output. This
means that input allocation rules will, in general, depend on the details of the vertically integrated production process,
which is beyond the scope of this paper.

47I drop potentially vertically integrated plants whenever I require information on the estimated within-plant input
allocations, since these are unlikely to be measured correctly.
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unique item codes belonging to the Machinery, Parts, and Equipment industry.48 Each ASICC code is

associated with a particular unit of quantity, such as kilograms, tonnes, or units sold, which allows one

to use the information on revenues and quantities to construct a within product code consistent unit

price, which I take to be item-level prices.49 While each item produced by a plant is assigned a product

code, approximately 12 % of census plant-year observations report multiple entries for the same product

code. These are, according to the ASI documentation, not to be regarded as duplicates, indicating that

plants also report separate product lines within a 5-digit ASICC code as well. In my empirical analysis,

I consider each entry as a separate variety of the same general product class, rather than aggregating

to the 5-digit ASICC code level.

Table 1: Plant-Product-Year Summary Statistics: Machinery, Equipment, and Parts

Variable Obs Mean Std. Dev. Min Max Median

Log Revenue
(
rjit
)

64109 15.96 2.59 1.39 25.14 15.97

Log Quantity Sold
(
qjit
)

64109 7.69 4.19 -6.91 24.17 7.5

Log Prices
(
pjit
)

64109 8.07 3.58 -3 21.27 8.05

Log Quantity Produced
(
yjit
)

64109 7.83 4.2 -3.44 24.19 7.69

Multi-product 64109 .76 .43 0 1 1

Multi-product × Single Industry 64109 .62 .48 0 1 1

Multi-product × Single Industry× No VI 64109 .43 .5 0 1 0
Notes: Multi-Product, Single Industry, and No VI are all dummy variables. Single industry refers to products produced by plants that only
produce products belonging to ASICC codes 74-78. No VI refers to plants that do not produce output sets that I classify as potentially
vertically integrated, using information on input use by single product plants. See Appendix B for more details.

For the purpose of estimation, I take the inputs of the production function to be labour, Lit, capital,

Kit, and materials, Mit, as is standard in the literature. I then measure labour input Lit by the number

of man-days worked, and capital, Kit, as net-value of fixed assets deflated by the yearly capital deflator

used in Allcott et al. (2016).50 Since I observe information on the price and quantity of various inputs

at the 5-digit ASICC code, I generate a Cobb-Douglas quantity index to measure material inputs, Mit,

that is not subject to the input price bias discussed by De Loecker and Goldberg (2014) and De Loecker

48These product codes correspond to all product codes that belong to the 2-digit ASICC categories 74-78. See Appendix
B for more details and examples of the 5-digit codes.

49Note that some product codes do not have quantity information, although these are relatively rare, with only 15%
of the item-plant level observations containing no quantity information, and just over 9% of plant-item level revenues
involving no quantity information.

50I only include worker hours in Lit, rather than managerial hours, in part because this measure is less likely to be a
public input.
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et al. (2016).51 52

Table 2: Plant-Year Summary Statistics: Machinery, Equipment, and Parts

Variable Obs Mean Std. Dev. Min Max P50

Log labour hours (lit) 35475 9.19 1.54 3.26 15.38 8.95

Log capital stock (rupees) (kit) 35475 15.74 2.34 .69 23.82 15.54

Log materials (Cobb-Douglas aggregator) (mit) 35475 7.08 3.27 -3.91 22.99 6.63

Number of Varieties (Jit) 35475 2.52 2.06 1 10 2

Multi-product 35475 .57 .5 0 1 1

Multi-product × No VI 35475 .46 .5 0 1 0
Notes: Summary statistics only reported for plants which only produce products belonging to ASICC codes 74-78. Labour hours refers to
mandays worked by workers, i.e. excluding managerial workers. Net Closing Value is the net closing value for all fixed assets reported in
Block C of the ASI, deflated by the yearly capital deflator used in Allcott et al. (2016). Cobb-Douglas materials are constructed according to

the following formula: Mit =
∑
k costkit∏

k

(
Wk
it

γk
it

)γk
it

, where costkit is total expenditure on input k by firm i, Wk
it is the unit-value (price) of input k,

and γkit is the fraction of observed materials input expenditure going into material k. Multi-product and No VI are dummy variables, where
Multi-product equals 1 if a plant produces multiple products, while No VI equals 1 if the plant does not produce an output sets that I classify
as potentially vertically integrated. See Appendix B for more details.

Before I move on to discussing estimation, there are two features of the ASI data that require

some minor tweaks to the baseline model discussed in Section 3. First, note that the ASI contains

information on both quantity sold and quantity manufactured in each year (See Table 1). While these

variables are generally quite similar, with just over 75 % of observations involving quantities sold and

produced that are within 5 % of each other, there are some cases where quantity sold and quantity

manufactured differ by a significant margin. Since this is due to inventory management, I augment

the model described in Section 3 to account for inventories by modifying the output market clearing

condition to be Qj
it = Y j

it − ∆INV j
it , where ∆INV j

it is the change in inventories of product j at time

t, while I take Qj
it to be quantity sold and Y j

it to be quantity produced. In practice, accounting for

inventories in this way changes the model very little, except for slight differences in notation. In

particular, inventories now become a state variable for the firm’s problem, and marginal costs should

51This index is created using information on the value and quantity of up to ten major inputs that are purchased from
domestic firms, and up to five material inputs that are imported from firms abroad. I use this information to construct
firm-varying materials input prices, W k

it, by dividing the purchase values by observed purchase quantities. I then construct

a Cobb-Douglas price index for materials, given by
∏
k

(
Wk
it

γkit

)γkit
, where γkit is the fraction of observed materials input

expenditure going into material k. Aggregate materials, Mit, is then determined by dividing total observed materials
expenditures by the plant level materials input price index. Note that this formulation of the Cobb-Douglas price
index implies that different plants may use Cobb-Douglas materials aggregators that have different input elasticities, γkit.
However, cost minimization by the firm implies that the observed materials cost shares will be equal to these heterogeneous
input elasticities.

52Note that using such a Cobb-Douglas index to measure input quantities may generate issues in the comparability of
TFP across firms, as plants using different types of inputs may not be in comparable units. These differences in units
may then show up in one’s TFP estimates, which will generate measured differences in productivity that have nothing
to do with “real” productivity differences. To deal with this concern, I also re-estimate all of my main TFP regressions
with materials expenditures in place of the materials quantity aggregator, to verify that my results are not being driven
by materials aggregator issues. These results can be found in Appendix E.
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be interpreted as marginal costs conditional on some desired change in inventories.53

The second feature of that the data that I have to account for is the fact that the ASI records

information on the amount of tax paid by each item sold. Since taxes generate an observable wedge

between the price paid by consumers and the price received by producers, I modify the pricing model

in Section 3 to account for differences in ad-valorem tax rates that must be paid by consumers across

products.54 This generates a minor modification to the pricing first-order conditions, which I discuss

in detail in Appendix C2, where I work out the details of the marginal cost inversion for my empirical

model.

Finally, since I wish to examine the effect of import competition on within-plant specialization, I

supplement the ASI data with information on aggregate imports and tariff rates by 4-digit HS code from

UN Comtrade, and the UNCAD TRAINS database, respectively. I then match this information to the

5-digit ASICC codes I observe in the ASI, using a series of public crosswalks, as well as information on

the value of imported inputs reported in the ASI, to deal with many-to-one matches of product codes.

See Appendix B3 for details.

5 Estimation

While Theorem 1 applies to a fairly general demand and production functions, to make estimation

feasible for the given sample size, I specify the functional form of the demand and production function

up to small number of unknown parameters, as is standard in most applied work. In the following

section, I first describe the specification of the demand system, present my identification strategy for

identifying the demand parameters, and then present the estimates. I then describe the specification

and estimation of the production function, and present my estimated production function parameters.

5.1 Demand Estimation

I specify the aggregate demand system using a variant of the discrete choice models incorporating

continuous quantity choice described in Björnerstedt and Verboven (2013). While more details are

described in Appendix C, this demand system is essentially a generalization of the standard nested logit

model described in McFadden et al. (1978) or Berry (1994), that allows consumers to make continuous

quantity choices.55 As in nested logit, the consumer choice problem can be represented as a sequential

choice problem, with consumers first choosing a product-nest, which I will consider to be separate 5-

digit ASICC codes, and then a variety within that product nest, corresponding to a particular product

53Note that the conditional cost-minimization problem remains conditional on Y jit = Qjit + ∆INV jit in this case, which

means the conditional cost function for (10) becomes C
(
~Kit, ~Qit

(
~Pt

)
+ ∆INV jit, ~ωit,

~Ait

)
, which, in practice, changes

very little except for the interpretation of marginal costs. Note that I will treat inventory changes as exogenous, since
they are not the focus of this paper. However, one could certainly augment the model to allow inventory changes to be a
firm-level choice variable.

54I measure the ad-valorem tax rate as the ratio of total taxes recorded, over gross revenues minus total taxes. Note
that most of the tax rates are quite small, with a median tax rate of around 4%.

55Note that this demand model is also equivalent to a two-stage nested CES demand function, as originally shown by
Verboven (1996).
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produced by an individual plant. Let Λg
t denote the set of varieties belonging to product-nest g, including

imported varieties. Demand for product j ∈ Λg
t ∈ Ωh

t , where Ωh
t is the set of varieties belonging to 3-digit

ASICC code h, is then given by:

Qjg
it

(
~Pt

)
=
Eh
t

P jg
it

exp
(
δjgit
σ

)(∑
k∈Λgt

exp
(
δkgmt
σ

))σ−1

∑
Λlt∈Ωht

(∑
k∈Λlt

exp
(
δklmt
σ

))σ , (26)

where α > 0 and σ ∈ (0, 1] are demand parameters, δjgit ≡ ηjgit − αpjgit is the mean-utility of product

j, and Eh
t is total expenditure by consumers in the market h at time t.56 In this formulation of the

demand system, I consider different 3-digit ASICC codes to be different markets, the sense that they

correspond to different choice-sets, Ωh
t .

57

The general approach to demand estimation is based on the mean utility inversion approach outlined

in Berry (1994), where a simple linear estimating equation is generated by the inverse mapping between

market shares, and the mean-utility levels, δjgit . To obtain this mapping, I need to take a stance on

the outside option, which in this application corresponds to products within the market that are not

within the ASI’s sample frame, or product codes that are within consumers choice sets but are not fully

accounted for within the given 3-digit ASICC code. Let 0 ∈ Ωh
t index this outside option for any market

h, and normalize δ0
t ≡ 0, since discrete choice models are only identified up to such a normalization. It

is then straightforward to show that mean-utilities are revealed by the following function of revenue-

shares :58

δjgit =
rsjgit
rs0h

t

− (1− σ) rs
j|g
it , (27)

where rsjgit ≡ ln

(
Rjgit∑

Λ
g
t ∈Ωht

∑
l∈Λ

g
t
Rklmt

)
is the log of product j’s revenue share, rs0h

t is the natural log of the

revenue share of the outside option in market h, and rs
j|g
it ≡ ln

(
Rjgit∑

k∈Λ
g
t
Rkgmt

)
is the natural log of the

revenue share of variety j ∈ Λg
t within 5-digit ASICC code g. Note that I consider imported goods to

56Recall that lower case letters correspond to natural logs, so pjit ≡ ln
(
P jit

)
.

57See Appendix B2 for a list of 3-digit ASICC codes. While one could certainly define choice sets in alternative ways,
this particular formulation was chosen so cannibalization effects within multi-product firms are appropriately estimated.
In particular, note that if all products within Machine, Parts, and Equipment are considered part of the same choice set,
most firms would have approximately zero market shares, which will generate zero cross-product-code elasticities within
this demand system (See Appendix C). While I regard Machine, Equipment, and Parts as fairly similar objects from the
production side, on the consumption side (specifically, from the point of view of downstream firms), not all items within
these sets are likely to substitute towards one another. Since the 3-digit ASICC codes appear to grouped in terms of
downstream uses, such as Agricultural and Forestry Equipment (761) vs Food, Beverage and Tabacco machinery (762),
these provide a relatively straightforward way to group products that should substitute towards one another.

58The derivation of the mean-utility inversion exactly follows the derivation for the nested logit presented in Berry
(1994), with revenue shares replacing quantity shares. In particular, note that (26) can be rewritten as RSjgit =

exp

( jg
it
σ

)(∑
k∈Λ

g
t

exp

(
δ
kg
mt
σ

))σ−1

∑
Λ
g
t∈Ωht

(∑
k∈Λlt

exp

(
δklmt
σ

))σ , where RSjgit ≡
P jgit Q

jg
it

Eht
. Note that this is identical to the expression for the nested logit

demand model in Berry (1994), except with revenue shares replacing quantity shares.
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be part of each 5-digit ASICC nest, and hence include total imported revenue within Λg
t .

59

Equation (27) defines the inverse mapping between market shares and mean utilities which makes

linear IV estimation feasible. To see this, substitute into δjgit ≡ ηjgit − αp
jg
it into (27), yielding:

rsjgit
rs0h

t

= (1− σ) rs
j|g
it − αp

jg
it + ηjgit . (28)

Since this estimating equation comes from a discrete choice model, the two demand parameters that

I wish to estimate in (28), (α, σ), can be interpreted as density parameters governing the distribution

of idiosyncratic taste shocks of machinery purchasers in this market, as noted by Berry (1994). In

particular, as I show in Appendix C, where I derive (26) from a discrete choice microfoundation, α

governs the variance of taste shocks across all product codes and all varieties in the market, with larger

values of α implying smaller variance of the idiosyncratic taste shocks. If there is less idiosyncratic

taste variation, this means that horizontal product differentiation will be much less important in the

aggregate, and therefore price elasticities will generally become larger for all varieties.

The parameter σ, on the other hand, governs the correlation of taste shocks within a product code.

In particular, low values of σ imply that individual consumers draw a vector of idiosyncratic taste shocks

that are strongly correlated within a product code. As a result, each consumer tends to, on average,

prefer consuming varieties within one product code over all the others, leading to larger cross-price

elasticities within product code, compared to across product codes. On the other hand, as σ approaches

1, this generates zero correlation in the taste shocks within product codes. Note that examining how

a product’s within-product code revenue share, rs
j|g
it leads to variation in it’s overall market share

rsjgit , helps identify this consumer taste correlation parameter, with the special case of no correlation

corresponding to the case where rs
j|g
it drops out of (28).

Equation (28) can be estimated using linear instrumental variables methods, with unobserved quality,

ηjgit , functioning as the structural residual.60 Note that instrumental variables are needed because plants

choose their prices with knowledge of their quality levels, ηjgit . As a result, plants that produce higher

quality products will tend to charge higher prices, meaning that the OLS estimates of α are likely to be

downward biased. Furthermore, the within group revenue shares, rs
j|g
it , are also endogenous, implying

that the estimates of 1− σ obtained by OLS would be inconsistent.

To find a suitable instrument for prices in (28), one generally needs a cost-shifter, such as input

59See Appendix B3 for details on the mapping between 5-digit ASICC codes and 4 digit HS codes used to determine
total imports by ASICC code.

60Note that the right hand side of (28) is only observable if potential market size, Eht , is known, in which case the
outside option can be constructed by subtracting observed ASI revenue in each period from potential market size. Since
India experienced significant growth over the sample period, it is important to allow Eht to grow over time. To accomplish
this, I set potential market size in 2001 for each three-digit ASICC code, Eh2001, to two times observed revenue in the ASI,
for the year 2001, where total industry revenue is obtained by summing up all observed revenues in the ASI for the given
three-digit ASICC codes, multiplied by the the firm-level multipliers for plants that are randomly sampled, plus imports.
Potential market size in subsequent years is then calculated using Eht = GRtE

h
t−1, where GRt is the growth factor in total

observed revenue for all plants I observed in the Machinery, Equipment, and Parts industry plus imports, from year t− 1
to t. This formulation of potential market size means that 3-digit ASICC codes that experienced slower than average
revenue growth will have larger shares of consumers choosing the outside option. Note that since this formula led to
occasionally negative outside option shares for a small number of 3-digit ASICC codes, I instead scaled the initial levels
of these codes by three times observed revenue in 2001, to guarantee that the outside option share is always positive.
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prices, that are excluded from the demand function. While plant-varying input prices are observable

in the ASI, the key difficulty in the differentiated product context considered in this paper is that the

structural residual, ηjgit , embodies quality differences across products. As a result, a standard instrument

that may be valid in a homogeneous goods context, i.e. plant-varying input prices, are unlikely to be

valid, since differences in input prices across firms may reflect differences in the product-level quality

choices, as in, for example, Verhoogen (2008), Kugler and Verhoogen (2012) and De Loecker et al. (2016).

Specifically, if plants who wish to produce higher quality outputs need to purchase higher quality inputs,

input quality differences across firms are likely to be reflected in these prices, thus violating the required

exclusion restriction for input prices to function as valid instruments.

To address this concern, I generate an input-price instrument that only harnesses variation in in-

put prices in other output markets, thereby harnessing cost-variation that should be uncorrelated with

demand or quality shocks in the Machinery, Equipment, and Parts industry. To construct these instru-

ments, let Ig denote the set of 5-digit input product codes that I observe being used by single product

producers of product code g, and let Fkgt denote the set of firms observed in the ASI at time t who

purchase an input with product code k ∈ Ig, who do not sell any outputs in the Machinery, Equipment,

and Parts Industry. Letting W k
it denote the current price of input-code k paid by firm i, I define the

following input price instrument which varies at the product-code and year level:

Zjg
it = Zg

t =
∑
k∈Ig

γkg × ln

(∑
m∈Fkgt

W k
mt

|Fkgt |

)
, (29)

where γkg is an input weight, given by the overall cost share of input k ∈ Ig in the production of

product-code g by single product firms.61

Roughly speaking, Zg
t simply uses average input prices in other output markets, and will function as

a valid instrument as long as time-variation in the price of inputs paid by firms operating in other output

markets are primarily driven by demand and supply shocks that are specific to those industries, rather

than demand shocks or quality changes in the Machinery, Equipment and Parts industry. Put differently,

I require that this input price variation be driven by demand and supply shocks in other industries,

that, on average, are orthogonal to machinery demand shocks. Roughly speaking, this requires that

average input prices not be driven by machinery industry demand, which will obviously not be satisfied

in input markets where the machinery industry is the primary downstream consumer. To deal with this

concern, I exclude any input codes k from k ∈ Ig if more than 30% of the revenue I observe going into

purchases of k comes from Machinery, Equipment, and Parts producers.62

61These weights are chosen to put greater weight on the price changes of inputs that are more important for the
production of product code g. Note that in practice I trim the 95th and 5th percentiles of these prices by product code
to limit the influence of extreme outliers, and demean the value of this instrument by product code so as to only take
advantage of across time variation in input prices for each product code, rather than variation in the levels. See also
footnote 62.

62Since I am excluding some inputs from the construction of the input price instrument, this means that the input
weights, γkg, do not necessarily sum to one for each output code g, and therefore levels of the input price instrument are
not necessarily informative. To deal with this, I demean the value of each instrument by product code so as to only take
advantage of the across time variation in the price shocks. While one could instead rescale the instrument so that the
weights summed to one for the non-excluded input codes, this strategy would artificially put greater weight on cost shocks

30



Note that one limitation inherent in Zg
t is that it does not vary across plants that produce the same

product codes. While one could define an analogous instrument at the firm-level, taking advantage of the

different input sets used by different plants, I do not pursue this strategy since the choice of different

inputs is almost certainly correlated with product quality. Instead, I construct a second instrument

that takes advantage of the variation in the output sets produced by different multi-product plants. In

particular, this instrument is based on the average value of Zg
t taken by other products produced within

the same firm:

Z−jgit =

(∑
k∈Yit Z

kl
it

)
− Zjg

it

Jit − 1
, (30)

where Jit = |Yit|. Note that this instrument will be correlated with price either through within-

plant cannibalization effects, or through cost-shocks that affect common inputs that are used in each

production line within a plant.

The results of this estimation strategy can be found in Table 3, below.63 As expected, OLS estimation

of (28) generates a price coefficient of the wrong sign, since prices tend to be positively correlated with

quality. The instrumental variables strategy, on the other hand, appears to fix this bias, generating point

estimates that imply an average own-price elasticity of approximately 2.4. Note that the coefficient on

rs
j|g
it is quite close to one, which, given the discrete choice formulation underlying this demand system,

means that consumer level taste shocks are strongly correlated within a product code, and as a result,

cross-product substitution will tend to primarily occur within product codes, rather than across product

codes. As a result, cannibalization effects will tend to be strongest in plants producing multiple varieties

of the same product code, rather than plants producing multiple product codes.

To alleviate potential weak instrument concerns, I also report the first stage estimates in Table 4.

Note that the input-price instruments are strongly correlated with the endogenous variables, with the

first stage F-statistics taking values of around 24 and 12. Moreover, note that the first-stage coefficients

generally take the sign one would intuitively expect, with increased input prices being associated with

output price increases.64

for inputs with small cost shares, γkg, in product codes where an important input was excluded from k ∈ Ig, making this
instrument less likely to scale the cost shocks correctly.

63Note that the regressions include a set of dummies for various plant-level observables, including state, urban versus
rural, census status, as well as organization and ownership type, as an alternative to including plant fixed effects. This
allows me to use the price variation of the randomly sampled plants in my demand estimates, which I would have to drop
if I included plant fixed effects.

64The fact that the input price instrument is positively correlated with the within-product code revenue shares is
perhaps surprising, since one would expect input price increases to decrease market shares. Note, however, that since
this instrument does not vary within a product code, this is likely due decreased output (or exit) of competitors, which

will mechanically increase rs
j|g
it within a product code. On the other hand, Z−jgit being negatively associated with rs

j|g
it

makes sense, in so far as cost shocks that affect common inputs within a plant lead to price increases, and therefore loses
in market shares.
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Table 3: Demand Estimates

(1) (2)

OLS IV

pjgit 0.00682*** -0.233**

(0.00210) (0.111)

rs
j|g
it 0.949*** 0.843***

(0.00354) (0.214)

Observations 60,066 60,066

Standard errors clustered by plant and product code

*p<0.1; **p<0.05; ***p<0.01
Notes: Dummies for product code, year, state, census status, age, urban, organization
and ownership type, and number of products sold also included in all regressions.

Table 4: First Stage Estimates

(1) (2)

pjgit rs
j|g
it

Zg
t 0.328*** 0.157***

(0.109) (0.0448)

Z−jgit 0.353 -0.401***

(0.267) (0.145)

Observations 60,066 60,066

AP F-Stat 23.74 11.74

Standard errors clustered by plant and product code

*p<0.1; **p<0.05; ***p<0.01
Notes: Dummies for product code, year, state, census status, age, urban, organization
and ownership type, and number of products sold also included in all regressions.
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5.2 Production Function Estimation

As is standard in much of the productivity literature, I assume that all firms in the industry use

a Cobb-Douglas production technology, Y j
it = exp

(
ωjgit
) (
Ljgit
)βL (

Kjg
it

)βK (
M jg

it

)βM
.65 To obtain an esti-

mate of the within-firm input allocations, I apply Theorem 1, using the estimated demand parameters

(α̂, σ̂) to determine the appropriate mapping between observables and estimated input allocations,

(L̂jgit , K̂
jg
it , M̂

jg
it ).66 Having solved for the input allocations, production function estimation can proceed

using standard production function estimation tools, as outlined below. To generate a simple estimating

equation to guide this discussion, take logs of the production function after substituting in the estimated

input allocations, yielding:

yjgit = βLl̂
jg
it + βK k̂

jg
it + βMm̂

jg
it + ωjgit . (31)

As discussed earlier, a key identification problem inherent in estimating models like (31) is the

transmission bias problem that has been highlighted by much of literature on production function

estimation.67 Since the firm chooses input quantities with knowledge of their own productivity, each of

the inputs is likely to be correlated with the structural residual, ωjgit , in (31). As a result, one cannot

simply estimate (31) by OLS.

A popular approach to circumventing the transmission bias problem uses the proxy-variable tech-

niques developed in Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg et al. (2015),

which have fruitfully been applied to answer a number of different questions related to productivity.68

The key insight exploited in these papers is that input demands (capital investment in Olley and Pakes

(1996), materials in Levinsohn and Petrin (2003)), directly depend on productivity when firms are

profit maximizing. As a result, we can use information on input demands to proxy for TFP(Q), thereby

controlling for the endogeneity problem created by unobservable productivity shocks.69

While a proxy-variable approach could be used to estimate (31) in principle, there are a number of

complications introduced by multi-product firms that make these estimators intractable in this context.

First, as discussed by Ackerberg et al. (2015), the Olley and Pakes (1996) and Levinsohn and Petrin

(2003) approach will only identify the labour input elasticity if there is optimization error in labour input

demand, or under variable timing assumptions where labour and materials are chosen with different

information sets. These extra assumptions would invalidate the assumption underlying Thereom 1, and

thus are not particularly useful in this context.

On the other hand, while the proxy-variable estimator proposed by Ackerberg et al. (2015) could

still be used, note that the semi-parametric approach they propose to estimate TFP(Q) is unlikely to be

65Note that since I measure output in quantity units, ωjgit will measure TFPQ, rather than TFPR.
66See Appendix C2 for more details on the appropriate mapping given the assumed demand system (26). Note that

since I have only estimated the production function for the Machinery, Equipment, and Parts industry here, I drop
multi-industry plants in the subsequent regressions, as I do not have the necessary information to determine their input
allocations.

67See Griliches and Mairesse (1995) and Ackerberg et al. (2007).
68See, for example, Pavcnik (2002), De Loecker (2007), and Topalova and Khandelwal (2011).
69Note that TFP here should be regarded as TFPQ, since I yjit is in quantity units.
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tractable for multi-product firms. In particular, a key assumption maintained in Ackerberg et al. (2015)

is that there exists a one-to-one mapping between current TFPQ levels and firm-level state variables.

This mapping, called the control function, is estimated non parametrically in a first stage regression of

outputs on inputs.70 Note, however, that the state-space for multi-product firms is the entire vector

of product-level TFPQ terms, (~ωit). While in principle the general approach can be augmented to

account for multiple unobservables, see Ackerberg et al. (2007), this approach will quickly run into

dimensionality problem in my context, since the vector of unobserved quality terms, ~ηit, should also be

state variables, as well as the particular set of product codes produced by the firm.71 Even if one could

guarantee that a well-defined control function exists, given the large state space, it is unlikely that one

could approximate it accurately in a first-stage regression.

To avoid the issues associated with adapting the semi-parametric control function to a multi-product

firm context, I instead consider a dynamic-panel style estimator, as in Anderson and Hsiao (1982), Arel-

lano and Bond (1991), Blundell and Bond (1998), Blundell and Bond (2000) and Bond and Söderbom

(2005), for the purposes of production function estimation. This approach does not require the use of

a control function, and thus will not run in to the dimensionality problems discussed above. Moreover,

since this does not require the existence of a control function, it places less restrictions on the econome-

trician’s information set, since there no longer needs to be a one-to-one mapping between observables

and productivity. For example, there can be firm-varying cost shocks to to all inputs that are unobserved

by the econometrician, which proxy-variable methods generally cannot allow.

To obtain the estimating equation for the production function, I assume that productivity follows

an AR(1) process, i.e.:

ωjgit = ρg0 + ρωjgi,t−1 + ξjgit , (32)

where ρg0 is the mean TFP of varieties belonging to product-code g.

Substituting this law of motion for productivity into (31), yields yjgit = ρg0 +βLl̂
jg
it +βK k̂

jg
it +βMm̂

jg
it +

ρωjgi,t−1 + ξjit . Once can then quasi or “ρ-difference” this equation, by subtracting the lagged value of

(31) multiplied by ρ from this expression, yielding :

yjgit = ρg0 + ρyjgi,t−1 + βL

(
l̂jgit − ρl̂

j
i,t−1

)
+ βK

(
k̂jgit − ρk̂

jg
i,t−1

)
+ βM

(
m̂jg
it − ρm̂

jg
i,t−1

)
+ ξjgit , (33)

where the innovation to productivity, ξjit, becomes the structural residual. Since the above model is

nonlinear in parameters, due to the interactions between ρ and the production function parameters,

(33) is estimated using a nonlinear GMM estimation procedure.

Two related points are worth emphasizing concerning estimating equation (33). First, the structure

of this estimating equation is very similar to that used in Ackerberg et al. (2015), with yjit essentially

70Technically, the control function will not actually be identified until the second-stage is estimated, since one cannot
separate production function terms from control function terms in their first stage regression. Nevertheless, the key idea
is that some unknown function of inputs and firm-level state variables must be accurately estimated in the first stage.

71The set of product codes being a state variable leads to most significant dimensionality problem. Roughly speaking,
this means one must estimate a different control function for every combination of product codes observed in the data.
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taking the place of their first stage predicted values.72 This relationship between dynamic panel esti-

mators and their estimator is also noted by Ackerberg et al. (2015), with the key tradeoff between the

two approaches being that the dynamic panel approach relies more heavily on the linearity of the pro-

ductivity process, while proxy-variable approaches generally allows productivity to follow a non-linear

Markov process.73 Second, and perhaps more importantly, the key difference between the specification

of the production function (31) that I use to generate (33), compared to the approach in Ackerberg

et al. (2015), is that there are no productivity shocks that are unobserved by the firm. This is a more

restrictive assumption on a firm’s information set, relative to Ackerberg et al. (2015), which the reader

should bear in mind. Note that while one can modify the above estimating equation to incorporate these

extra productivity shocks, as Ackerberg et al. (2015) do when comparing the dynamic panel method

to their approach, this would be problematic in a multi-product firm context because shocks that are

unobserved by the firm would break the link between observed outputs, and the input allocations firm

chose with knowledge of their TFPQ levels, which was used to derived the optimal allocation rule (9).74

Hence, while acknowledging that this approach does require that I make some stronger assumptions on

the firm’s information set, relative to proxy-variable approaches, note that these extra restriction are

only likely to be of quantitative importance if the unobserved component of productivity is relatively

large compared to the component known by firms.

I now turn to the nonlinear instrumental variables strategy I use to estimate (33). As is standard

in much of the production function literature, I assume that materials is a static input, while capital

is a dynamic and predetermined input. In particular, I assume one-period time to build in capital, as

in Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg et al. (2015), so that firm-level

capital follows the simple law of motion Ki,t+1 = lK(Kit, I
K
it ). This law of motion implies that Kit cannot

react to any news that arrives during period t. Since ξjgit , the “innovation” to productivity, functions as

the structural residual in (33), both kit and ki,t−1 can be used as instruments to identify βK , since they

will both be uncorrelated with ξjgit , as long as one accounts for the product-code specific intercepts, ρg0,

with a series of product-code fixed effects.75

Similar to Ackerberg et al. (2015), I also assume that labour is also a dynamic input, in the sense

72Or Φ̂jgit , adapting their notation to my context.
73Strictly speaking, one can allow for a non-linear Markov process using a dynamic panel approach, as long as one is

willing to abstract from measurement error in output. Note, however, that the linear AR(1) structure that I use allows
me to account for differences in average TFPQ across product codes in a more parsimonious manner; i.e. by demeaning
within product codes, or by including a series of product code fixed effects.

74It is easiest to think of this problem in the case where these unobserved productivity shocks occur after production.
In this case, firm’s choose expected output, rather than realized output. As a result, the link between their chosen level
of output, and observable output which I use in (9), would be broken. While a “first-stage” estimating equation might
allow the researcher to identify the difference between expected productivity and realized productivity, these first-stage
estimating equations would run into the dimensionality problems discussed earlier, and multi-product firms would not be
able to be included in the estimation procedure, as the existence of productivity shocks would make the input allocation
rule no longer hold exactly.

75Note, however, that since I assume that capital is perfectly transferable across uses within the firm during each period,
the allocation of capital input across production lines, kjgit , will generally be correlated with the current productivity shocks,

since they are chosen in the current period. Hence kit can be used as an instrument, while kjgit cannot. Moreover, as
I mention in the main text, it is preferable to use firm-level inputs as instruments, rather than the estimated input
allocations, since this will deal with attenuation bias due to the measurement error generated by the fact that the input
allocations are estimated.
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that it faces dynamic adjustment costs, such as hiring or firing costs due due labour market regulation

and union activity, which are fairly substantial in many Indian states, see Besley and Burgess (2004).

This allows me to use lagged labour as an instrument to identify βL, since lagged labour inputs li,t−1,

will tend to be correlated with the quasi-differences in labour, l̂jgit − ρl̂
jg
i,t−1.

While it is fairly standard to also use the lagged value of static inputs in both proxy-variable and

dynamic panel approaches to production function estimation, note that only using this type of variation

to identify βM is problematic. In particular, it is not entirely obvious why the lagged value of a static

input should be correlated with differences in static input usage, except through productivity or demand

changes, as has recently been pointed out by Gandhi et al. (2016). While the fact that lagged inputs

may be weak instruments has been widely acknowledged in the dynamic-panel literature for a while, see

Blundell and Bond (2000), note that this problem is most likely to be pronounced with static inputs.

To deal with this concern, I also use the current and lagged values of the input price instruments

described in Section 5.1, Zg
t and Zg

t−1 for any j ∈ Λg
t , to identify βM . As long as these instruments are

valid for demand, meaning that variation in the input-price instrument is driven by demand and supply

shocks in other output markets, which affect the input prices of goods used to produce product code g,

then they will function as valid instruments for estimating (33) as well.

Altogether, I use the following set of moments to identify the parameters of the production function:

E


ξjgit



yjgi,t−1

li,t−1

kit

ki,t−1

mi,t−1

Zg
t

Zg
t−1

~Cjg
it




=



0

0

0

0

0

0

0

~0


for j ∈ Λg

t , (34)

where ~Cjg
it is a vector of 5-digit product code fixed effects, as well as number of product fixed effects,

which are included to account for the product-code specific intercepts, ρg0, as well as the economy of scope

effects discussed in Section 3.3. Note that I prefer to use firm-level input useage as instruments, xit,

rather than the estimated input useage by product line, x̂jgit for x ∈ (l, k,m), since using the estimated

shares as instruments should generate finite sample attenuation bias, due to the fact that these shares

are estimated from a first-stage regression, and thus, measured with error.

Estimation is done using the standard nonlinear IV estimator, and standard errors are obtained

using the block bootstrap, where I re-sample with replacement over plant identifiers, and re-estimate

the demand and production function parameters using the described two-step estimation procedure.76

The OLS and GMM results are presented below, in Table 5.

76For computational simplicity, I first de-mean the data within each 5-digit product code, so I do not need to actually
estimate the entire vector of product-fixed effects. Since (33) is linear conditional of (βL, βK , βM ), I concentrate out the
remaining parameters when minimizing the criterion function, so I only need to solve for (βL, βK , βM ) non-linearly.
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Table 5: Production Function Estimates

OLS GMM

βL 0.527*** 0.374**

(0.0607) (0.151)

βK 0.245*** 0.0819

(0.0390) (0.0739)

βM 0.263*** 0.780***

(0.0227) (0.128)

βL + βK + βM 1.04*** 1.24***

(0.0327) (0.0643)

Observations 3545 3545

Block bootstrapped standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The estimated production function parameters are fairly reasonable, with materials having the largest

input elasticity, as is commonly the case with gross-output production function. Interestingly, these

estimates allow me to reject constant returns to scale at the 5 % level. While constant returns to scale

often cannot be rejected in many studies based on revenue production functions, actual returns to scale

will tend to be biased downwards when one uses a revenue production function, as prices have to fall

when a firm increases their output.77 Hence, the machinery industry appears to be characterized by

significant scale economies, which one would indeed expect in large scale manufacturing.

6 Results

Having estimated the demand and production parameters for the Machinery, Equipment, and Parts

industry, I use this information to construct plant-product specific estimates of log TFPQ, defined as

the estimated residual from (31), as well as plant-product specific quality, defined as residual from (28).

I then use these estimates to quantify the extent to which within-firm heterogeneity matters, as well as

examine the impact of import competition on within-firm specialization.

6.1 Product-Level Heterogeneity Correlations

I begin by presenting some simple correlations between the various sources of product-level het-

erogeneity. Table 6, below, shows the correlation between estimated quality, TFPQ, log prices, and

markups, after being demeaned within their respective product code and year so I will not be making

apples to oranges comparisons. Many of these correlations have the expected sign, with prices being

77See Klette and Griliches (1996).
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negatively correlated with TFPQ but positively correlated with quality, and markups being positively

correlated with quality.

Table 6: Variety-Level Correlations

Variables Quality TFPQ ln
(
P jg
it

)
Markup

Quality
(
ηjgit
)

1.000

TFPQ
(
ωjgit
)

-0.532*** 1.000

Price
(
ln
(
P jg
it

))
0.874*** -0.596*** 1.000

Markups
(

P jgit
MCjgit

)
0.258*** -0.034*** 0.087*** 1.000

Notes: All variables demeaned within their respective product code and year. Quality refers
to the estimated residual from (28), and TFPQ refers to the estimated residual from (31).
Markups defined as the ratio of price to marginal costs, where marginal costs are estimated
estimated using the marginal cost inversion described in Appendix C2. *p<0.1; **p<0.05;
***p<0.01.

One potentially surprising finding in Table 6 is that quality and TFPQ are negatively correlated.

Note that this is a fairly strong negative correlation, and holds both across single-product firms, as well

as across products within multi-product firms, as one can see from Figure 1, where I report a number of

scatter plots between TFPQ and quality at the product level. Note that this sort of correlation appears

to contradict the intuition, considered in Kugler and Verhoogen (2012) as well as Garcia-Marin and

Voigtländer (2017), that TFPQ and quality are complements, in the sense that high TFPQ firms will

wish to produce high quality products. Rather, it appears that high TFPQ products tend to be lower

quality. A similar negative correlation between cost-side advantages and demand side advantages has

also been found by Forlani et al. (2016), and Jaumandreu and Yin (2016), who consider the separate

estimation of TFPQ and quality, primarily in a single-product firm context. These correlations could

imply that these different sources of product advantages are simply substitutes, in the sense that high

quality producers do not have an incentive to cut costs, since overall demand for high quality products

is high enough to cover high costs. On the other hand, this correlation could also be due to technological

constraints, where high-quality goods simply require more inputs (e.g., worker hours), and hence, will

tend to have lower measured TFPQ.

While determining the exact reason for this negative correlation is beyond the scope of this paper,

note that negatively correlated quality and TFPQ has important implications for how we think about

firm-heterogeneity and specialization at the plant-level. In particular, there are, roughly speaking, two

classes of products within this market: cheap-goods, which are low quality but easy to produce (i.e.

high TFPQ), and high-quality goods, which generate more demand for a given price, but generally are

costly to produce and therefore have relatively low TFPQ levels. In the following section, I more closely

examine how plant-level specialization responds to import competition, and whether plants choose to

focus on the quality dimension, or the productivity dimension.
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Figure 1: Negative Correlation between TFPQ and Quality

Notes: Standard errors of slopes, adjusted for two-way clustering by plant and product code, reported in parentheses. Quality refers to
the year-product code demeaned residual from (28), while TFPQ refers to the year-product code demeaned residual from (31). Panel
(1) includes all products, Panel (2) only includes single-product plants, and Panels (3) and (4) only includes products produced by
multi-product plants. Panel (4) plots within-firm demeaned values of TFPQ and quality.

6.2 Within-Plant Allocative Efficiency and Import Competition

Recent theoretical contributions by Eckel and Neary (2010), Bernard et al. (2011), Mayer et al.

(2014) and Mayer et al. (2016) have shown that productivity gains from trade can operate through a

within-firm margin. Specifically, multi-product firms that face greater import competition should be

more specialized, either by dropping low quality or low efficiency varieties, or by focusing more of their

resources towards their highest performing products. In this section, I obtain new evidence for these

within-firm reallocative gains using the tools for measuring within-firm heterogeneity developed in this

paper.

While previous papers have also examined empirical evidence for within-firm allocative gains from

trade, either by examining product-dropping in response to trade liberalization, as in Bernard et al.

(2011), or by examining revenue-skewness within plants in markets with different levels of trade exposure,

as in Mayer et al. (2014) and Mayer et al. (2016), this the first study to examine within-firm allocative

gains from trade using direct measures of within firm productivity and quality heterogeneity. This
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is important, as without estimates of the magnitude of within firm heterogeneity, it is impossible to

determine whether within firm reallocations are economically important.78

As a first-step to determining whether within-firm reallocations matter, I first decompose the vari-

ance of product-level productivity and quality into across-plant and within-plant variation, in Table 7,

below.79 Note that the magnitude of within plant variance in productivity and quality is approximately

half the magnitude of across plant variation, implying that there is less heterogeneity within plants than

across plants. On the other hand, the portion of the variation explained by the within plant component

is sizeable, accounting for more than a third of the overall variation for both dimensions of product level

heterogeneity.

Table 7: Multi-product Plant Variance Decompositions

Across Firm Within Firm Total

TFPQ

Variance 4.288 2.379 6.667

Percentage 64 % 36 % 100 %

Quality

Variance 0.250 0.168 0.418

Percentage 60 % 40 % 100 %

Observations 11,172 11,172 11,172
Notes: Only products produced by multi-product firms included in the sample. TFPQ cor-
responds to log quantity TFP, ωjit, from the main text, demeaned at the 5-digit product-
year level. Quality corresponds to the estimated residual from (28), demeaned at the
5-digit product-year level. Across firm variance corresponds to variance of estimated(

1
Jit

∑
k∈Yit x

k
it

)
, where x is the outcome of interest, while the within-firm variance cor-

responds to the estimated variance of
(
xjit −

1
Jit

∑
k∈Yit x

k
it

)
.

Since Table 7 documents sizeable within-plant heterogeneity, it is not yet apparent how much within-

plant heterogeneity matters, in the sense that within-plant reallocations can lead to within-plant effi-

ciency improvements. While Mayer et al. (2014) get at these magnitudes by examining the relationship

78Mayer et al. (2014) get at the economic magnitude of within firm reallocations by showing that their model implies
a linear relationship between a product’s rank in the within firm productivity ladder and export sales, where the slope of
this line depends on the degree of across and within firm heterogeneity. Since they can quantify the magnitude of across
firm heterogeneity using estimates from other studies that use the same data, they use this relationship to estimate the
magnitude of within firm heterogeneity that would rationalize the export sales distribution across products, given the
structure of their model. Note that this approach relies heavily on the parametric assumptions they make concerning
across firm heterogeneity (Pareto), as well as their approach to modelling within-firm heterogeneity (as one moves away
from a firm’s core product, marginal costs are geometrically increasing at a constant rate). My approach does not require
any of these restrictions, as well as allows for multiple dimensions of within-firm heterogeneity (quality and productivity).

79These variance decompositions are based on the identity xjit =
(

1
Jit

∑
k∈Yit x

k
it

)
+
(
xjit − 1

Jit

∑
k∈Yit x

k
it

)
, where the

two terms in brackets are uncorrelated by construction. The variance of the first term corresponds to the across plant
variation, while the second component corresponds to the within-plant component.
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between within-firm reallocations and firm-level productivity gains, simply examining the productivity

implications of within-firm reallocations would be problematic given the negative correlation between

TFPQ and quality discussed above. In particular, within-firm productivity improvements may come at

the expense of quality, which may hurt overall consumer welfare. Hence, as a first step towards quanti-

fying the extent to which within-plant reallocations may matter, I first need a metric for product-level

performance, or efficiency, that captures both dimensions of product-level heterogeneity.

We can find such a metric of efficiency by examining the residual of a revenue production function,

following Klette and Griliches (1996) and De Loecker (2011). As I show in Appendix E, one can use

the structure of the demand and production function to show that log revenues at the product level are

related to input use as follows:

ln(Rjg
it ) =

α
σ

1 + α
σ

(
βll

jg
it + βkk

jg
it + βmm

jg
it

)
+ ω̃jgit + η̃jgit︸ ︷︷ ︸

≡hjgit

, (35)

where:

η̃jgit ≡
ηjit

α + σ
+

1

1 + α
σ

ln
(
Eh
t

)
− (1− σ)

1 + α
σ

ln

∑
k∈Λgt

exp

(
δkgmt
σ

)
− 1

1 + α
σ

ln

∑
l∈Ωht

∑
k∈Λlt

exp

(
δklmt
σ

)σ ,

(36)

ω̃jgit ≡
α
σ

1 + α
σ

ωjgit , (37)

Note that the production function coefficients in (35) are each scaled down by
α
σ

1+α
σ

, since increases in

input use will require that prices fall for quantity produced to still equal quantity demanded, resulting

in smaller returns to scale than one would find when examining the quantity production function (31).

More importantly, the residual from this rescaled production function, hjgit ≡ ω̃jgit + η̃jgit , is a weighted sum

of productivity shocks, ω̃jgit , and demand shifters, η̃jgit , which incorporate variety-level quality differences,

as well as product-code level variation in overall demand, markups, as well as product space congestion

effects.80

Taking hjgit , or product-level TFPR, as a straightforward metric for product-level performance, I

then define plant-level TFPR as the sum of plant-product level TFPR, weighted by plant-product level

input shares Sjgit :

80In particular, note that (1−σ)
α+σ ln

(∑
k∈Λgt

exp
(
δkgit
σ

))
and 1

α+σ ln
(∑

l∈Ωht

(∑
k∈Λlt

exp
(
δklit
σ

))σ)
, will increase when-

ever there is entry of new competitors, leading to an overall decrease in η̃jgit due to product space congestion ef-

fects. On the other hand, product-code level increases in markups tend to decrease (1−σ)
α+σ ln

(∑
k∈Λgt

exp
(
δkgit
σ

))
and

1
α+σ ln

(∑
l∈Ωht

(∑
k∈Λlt

exp
(
δklit
σ

))σ)
, since increases in prices decrease each δjgit terms, and therefore tend to increase

η̃jgit .
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hit ≡
∑
j∈Yit

Sjgit h
jg
it . (38)

Following Olley and Pakes (1996), I can then decompose overall plant-level TFPR into average and

allocative efficiency components:81

hit =
1

Jit

∑
j∈Yit

hjgit +
∑
j∈Yit

(
hjgit −

1

Jit

∑
j∈Yit

hjgit

)(
Sjgit −

1

Jit

∑
j∈Yit

Sjgit

)
= hit︸︷︷︸

Average Performance

+OPit

(
~Sit,~hit

)
.︸ ︷︷ ︸

Allocative Efficiency

(39)

The second term in (39), sometimes referred to as the “OP” covariance after Olley and Pakes (1996),

increases as a plant allocates a greater portion of its input towards high performance products, and

therefore functions as a measure of allocative efficiency within a plant.82 Since this object is generated

by a simple revenue-productivity decomposition, this means that increases in this plant-level allocative

efficiency are measured in revenue productivity units, thereby generating a single dimensional metric to

quantify within-plant allocative gains.83

While hjgit provides a useful index of product-level performance, it will also prove useful to decompose

hjgit further into within and across product code variation in TFPQ, as well as quality, so one can

isolate the exact channels leading to within plant efficiency improvements. In particular, note that by

construction:

hjgit = ω̃gt + ω̃
j|g
it + η̃gt + η̃

j|g
it , (40)

where xgt ≡ 1
|Λgt |
∑

k∈Λgt
xkgit is average performance by 5-digit product code, and x

j|g
it = xjgit − xgt for

x ∈ {ω̃jgit , η̃
jg
it } is the variety specific deviation from that average. As a result, one can decompose overall

plant-level allocative efficiency as follows:

OPit

(
~Sit,~hit

)
= OPit

(
~Sit, ~̃ω

g
t

)
︸ ︷︷ ︸

“Cheap” product codes

+ OPit

(
~Sit, ~̃η

g
t

)
︸ ︷︷ ︸

“High demand” product codes

+ OPit

(
~Sit,

~
ω̃
j|g
it

)
︸ ︷︷ ︸

Relatively high TFPQ varieties

+ OPit

(
~Sit,

~
η̃
j|g
it

)
.︸ ︷︷ ︸

Relatively high quality varieties

(41)

The decomposition in (41) shows that there are four ways in which a plant can increase within-

plant allocative efficiency. In particular, they can specialize in high TFPQ, or high demand product

codes, in the sense that these product codes generally require less inputs than other product codes,

81Derivation exactly follows the derivation provided in Olley and Pakes (1996).
82See, for example, Bartelsman et al. (2013) and Melitz and Polanec (2015), who use this terminology in the context of

across plant reallocations.
83In fact, most productivity studies are in revenue-productivity (TFPR) units, rather than TFPQ units - see De Loecker

and Goldberg (2014). The only novelty here is measuring plant-level revenue productivity as the input-weighted sums of
product-level log TFPR, mirroring the industry-level revenue productivity decomposition of Olley and Pakes (1996).

42



or generate more revenues for a given log-price, respectively. On the other hand, a plant may also

specialize in products that it is relatively efficient at producing, in the sense that the product-level

TFPQ or “demand shifters” are larger when compared with other firms producing the same product

code.

Since, as I show in Appendix E, all the within product-code variation in η̃jgit is due to the demand

residual from (28), I refer to increases in OPit

(
~Sit,

~
η̃
j|g
it

)
as increased “quality specialization”, while I

refer to increases in OPit

(
~Sit,

~
ω̃
j|g
it

)
as “relative TFPQ” specialization. Variation in these terms will be

the key focus of my subsequent analysis of firm-level performance, since increased relative quality and

relative TFPQ will generally indicate increased efficiency. Note, however, that variation in OPit

(
~Sit, ~̃ω

g
t

)
and OPit

(
~Sit, ~̃η

g
t

)
cannot always be given an increased efficiency interpretation, as different product

codes are measured in different units, and therefore some high TFPQ product codes may simply appear

“cheap” when compared to other products because they are measured in larger units. This is simply a

reflection of the fact that making across product-code comparisons of productivity (and quality) are not

always meaningful, and therefore interpreting the product-code level specialization terms will generally

be difficult.84

Bearing these caveats in mind concerning the interpretation of the across product code specialization

terms, I consider aggregate trends in plant-level efficiency in Figure 2, below. In panel (1), I plot

the growth rate of each allocative efficiency term in (41), relative to the average value of firm-level

performance, ht ≡ 1
Nt

∑Nt
i=1 hit, in 2000, similar to the industry-wide decompositions in Pavcnik (2002).

In particular for each dimension of product-level heterogeneity, X ∈ (ω̃gt , η̃
g
t , ω̃

j|g
it , η̃

j|g
it ), I plot:

(Plant-Level RTFP Growth Due to Specialization in X)t =
OP t

(
~Sit, ~X

)
−OP 2000

(
~Si,2000, ~X

)
h2000

,

(42)

where OP t

(
~Sit, ~X

)
≡ 1

Nt

∑Nt
i=1OPit

(
~Sit, ~X

)
. As a result, the yearly value of each series can be inter-

preted as the proportion of average firm-level performance growth attributable to that form of product-

level specialization.

While the average values of the cross-product specialization terms do not change all that much over

the sample period, post-2004 there is a very large increase in the average degree of within product

code specialization. In particular, plants appear to be specializing much more in relatively high quality

varieties, at the expense of their relatively high TFPQ varieties. Note that this tendency for plants to

specialize in high quality varieties at the expense of their relatively high TFPQ varieties can also be seen

in the average levels of the within product code allocative efficiency terms, which I plot in panels (3)

and (4) in Figure 2. In particular, OP t

(
~Sit,

~
ω̃
j|g
it

)
is always negative, while OP t

(
~Sit,

~
η̃
j|g
it

)
is always

positive, implying that plants tend to allocate more inputs to relatively high-quality varieties, and less

84In particular, note that prices will also be measured in different units across product codes, and thus the average level
of the demand shifter within a product-code suffers from the same problems as across product code TFPQ comparisons.
Note, however, that the sum of these two terms will be in (log) revenue TFP units, which does not suffer from the units
problem these two terms suffer from on their own.
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inputs to cheap varieties.

Figure 2: Aggregate Trends in Within-Firm Allocative Efficiency and Tariffs

Notes: Panel (1) plots the relative growth rates of OP t
(
~Sit,

~̃ωgt

)
(Specialization in Cheap Products), OP t

(
~Sit,

~̃ηgt

)
(Specialization in

High Demand Products), OP t

(
~Sit,

~
ω̃
j|g
it

)
(Specialization in Relatively High TFPQ Varieties) and OP t

(
~Sit,

~
η̃
j|g
it

)
(Specialization in

High Quality Varieties). Note that growth rates in Panel (1) are normalized relative to the average value of plant-level performance,
ht, in the year 2000- See Equation (42). Panel (2) plots the average tariff rate for all products within the Machinery, Equipment,
and Parts Industry over time. Panel (3) plots average value of plant-level specialization in relatively high TFPQ varieties over time,

OP t

(
~Sit,

~
ω̃
j|g
it

)
), while Panel (4) plots the average value of plant-level specialization in relatively high quality varieties, OP t

(
~Sit,

~
η̃
j|g
it

)
.

Shaded area in panels (2), (3), and (4) plot the 95% confidence intervals, taking the demand and production function estimates as data.

Note that the magnitude of the shift toward quality (and away from TFPQ) is sizeable. In particular,

the growth rates in Figure 2 imply that the shift toward quality from 2000-2007 would have increased

average plant level-efficiency by close to 100 %, if it were possible to shift resources into high quality

goods without also implying a shift away from high TFPQ goods. Note, however, since high quality

varieties tend to have low TFPQ, as per Figure 1, the shift towards quality generates allocative efficiency

losses that actually dominate the TFPR gains generated by the increase in quality specialization.

These overall trends in specialization over time naturally leads to the question - is quality special-

ization driven by trade liberalization? As Panel (2) of Figure 2 demonstrates, to a first approximation

this appears to be the case, as the dramatic increase in quality specialization appears to occur around
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a round of dramatic tariff cuts passed in India in 2004, with average tariffs falling by more that 65 %.

To obtain more convincing evidence on whether tariff cuts are driving the within-firm shifts towards

quality, I regress these measures of within-plant specialization on the average of the tariff rates for each

5-digit product produced by the plant and a series of year and plant fixed effects. These results are

reported in Table 8, below.

Table 8: Tariffs And Within-Firm Efficiency

(1) (2) (3)

Quality Relative TFPQ Relative TFPR

Specialization Specialization Specialization

Tariffsit -0.0138* 0.0133* -0.000511

(0.00758) (0.00689) (0.00595)

Observations 1,747 1,747 1,747

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an OLS regression of the listed outcome variable on firm-level av-
erage tariffs as described in the main text.All regressions include year and plant fixed effects. Quality

Specialization is measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ Specialization is measured by

OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR specialization measured by OPit

(
~Sit,~h

j|g
it

)
.

Tariffsit measured as firm-level average of tariffs applied to each product-code produced within a
plant. Standard errors treat demand and production function estimates as data.

The first two columns of Table 8 are consistent with tariff cuts leading to increased quality spe-

cialization at the plant-level, while decreasing specialization in relatively high TFPQ goods. We can

determine the overall effect on plant level efficiency in the third column, where I report a similar regres-

sion for plant-level TFPR specialization, or OPit

(
~Sit,~h

j|g
it

)
. Since h

j|g
it = ω̃

j|g
it + η̃

j|g
it , the tariff coefficient

on this regression will equal the sum of the coefficients in columns 1 and 2. In general, these point

estimates imply that the shift towards quality induced by tariff cuts was revenue productivity neutral,

in the sense that it did not appear to significantly change overall plant-level performance as measured

by hit =
∑

j∈Yit S
jg
it h

jg
it .

Note, however, that the standard errors in Table 8 are somewhat large, leading to point estimates for

quality and TFPQ specialization that are only statistically significant at the 10 % level. This is largely

due to the fact that there is not a lot of cross-product code variation in tariff levels, as one can see from

the extremely tight confidence intervals for average Indian tariffs plotted in Figure 2. Moreover, issues

related to statistical inference aside, there are two further problems related to using tariffs to measure

the degree of import competition. First, tariff levels will not directly capture differences in the degree

of foreign competition across markets, since different product codes, conditional on a tariff level, will

have different numbers of foreign competitors. Secondly, tariff levels are likely to be chosen in India in
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response to product-level performance, perhaps due to political economy considerations, as discussed

in Trefler (1993), as well as Topalova and Khandelwal (2011) who specifically look at tariff changes in

response to industry performance in India. As a result, these estimates may not reflect a truly causal

effect of tariff changes on firm-level efficiency.

To deal with these concerns, I take advantage of an alternative source of variation in import compe-

tition within India: the emergence of China during the 2000s as a major trading partner. As discussed

in Autor et al. (2013), the emergence of China as a major player in international markets following their

ascension to the WTO in 2001 was largely driven by efficiency improvements within China, implying

that a significant portion of Chinese export growth is plausibly exogenous to industry performance in

India. More importantly, as I show in Figure 3, the increase in Chinese import competition experienced

within the Machinery, Equipment, and Parts industry in India was extremely large. While India im-

ported just over 5% of their machinery, equipment, and parts, from China in the early 2000s, by the

the end of my sample period close to 25 % of all imports in this industry come from China. Moreover,

Chinese imports increased by approximately a factor of 30 in this industry, which is roughly three times

the increase in Chinese imports experienced in other Indian industries.85

Figure 3: Chinese Imports in India: Machinery, Equipment, and Parts vs. Other Industries

Notes: Chinese import growth rates are deflated by the Indian wholesale price index. Average Chinese import shares calculated as the
simple average of import shares over each 5-digit ASICC codes. See Data Appendix B3 for details on the construction of imports by
product-code.

To determine whether this significant increase in Chinese import competition led to increased plant-

level allocative efficiency, I estimate the following model:

Specializationit = β ln

(
1

Git

∑
g∈Λit

IMg
IND,CHN,t

)
+ αt + γi + εit, (43)

where Specializationit is a measure of plant-level specialization or allocative efficiency, IMg
IND,CHN,t de-

85While these rates of import growth are enormous, one should bear in mind that both China and India experienced
massive GDP growth over this time period, with India’s GDP more than doubling and China’s increasing by a factor of 4,
while more than half of Chinese export growth in the 2000s was driven by machinery exports (Berger and Martin (2013)).
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notes total Indian imports from China in product code g at time t, Λit denotes the set of product codes

produced by firm i, Git is the number of unique 5-digit product codes produced by firm i, and αt and

γi denote year and plant fixed effects, respectively.

Note that simply estimating (43) by OLS is likely to underestimate the effect of Chinese import

exposure on specialization, as one would expect Chinese imports to rise more for product codes where

domestic producers are not performing as well, potentially due to lower degree of specialization.86 To

deal with this source of bias, I estimate (43) by 2SLS, instrumenting ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
with

total imports from China in other low to middle income countries besides India.87 More formally, for

each plant I construct the instrument:

ZCHN
it = ln

(
1

Git

∑
g∈Λit

∑
k∈CNo India

IMg
k,CHN,t

)
, (44)

where CNo India denotes the set of low to middle income countries excluding India.88 Note that ZCHN
it

should function as a valid instrument as long as Chinese import growth in other countries is not driven

by factors determining plant-level specialization in India.89

The OLS and IV results for this estimation strategy can be found in Tables 9 and 10, below, where

I consider as outcomes the various measures of within-product code measures of plant-level allocative

efficiency described earlier. Overall, the qualitative story told in Tables 9 and 10 is similar: Plants

tend to specialize more in the production of relatively high quality outputs, at the expense of their

relatively high TFPQ varieties. Overall, the net effect of plant-level performance, as measured by

columns (3) and (4), respectively, indicates that this pattern of specialization led to small loses in plant-

level performance, although these changes are not statistically different from zero. Comparing the IV

and OLS estimates, we see that accounting for the endogeneity of imports appears to be correcting

the expected downward bias, as the point estimates for all measures of plant-level specialization are

substantially larger than the OLS estimates. In columns (4) through (6) of Table 9 and columns (6)

to (8) of Table 10, I examine whether this change in specialization is driven by changes in the the

number of individual varieties produced, or number of distinct product codes produced, by including

86Note, of course, that since I include plant fixed effects in this specification, for the bias to work in this direction
it would have to be that lower performing product codes had lower growth rates in specialization, compared to other
industries.

87I only include low to middle income countries in this set as Chinese trade to high income countries is likely to depend
on very different factors than those determining trade between other low and middle income countries, which would tend
to decrease instrument strength. This is analogous to the strategy in Autor et al. (2013), who when constructing a similar
instrument for Chinese import exposure in the United States, only include Chinese exports to other high income countries.
The list of WTO low and middle income countries can be found at http://wits.worldbank.org/referencedata.html.

88When mapping Chinese imports in other countries from 4-digit HS codes to 5-digit ASICC codes, I do not allocate
imports across ASICC codes using the import weights discussed in Appendix B3, since using these import weights would
mechanically generate higher Chinese export growth in AISCC codes that tend to be imported the most in India, which
is exactly the sort of endogenous variation in Chinese imports to India that I am trying to avoid with this instrument.
Hence, each 4-digit HS code that maps to a 5-digit ASICC code is given equal weight in the construction of the instrument.

89Note that I allow the set of products produced by the firm to vary with my instrument. This is because the level
of Chinese exports in newly products added products may directly affect the degree of specialization within the plant. I
return to this point in Section 6.4 and Appendix G1.
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number of variety and number of product code fixed effects. Note that the inclusion of these controls

barely changes the estimated magnitudes, implying that the changes in specialization I am observing are

generally not due to systematic differences in the degree of specialization for firms that either produce

more varieties or distinct product codes.

Table 9: Import Competition And Within Plant Efficiency (OLS)

(1) (2) (3) (4) (5) (6)

Quality Relative TFPQ Relative TFPR Quality Relative TFPQ Relative TFPR

Specialization Specialization Specialization Specialization Specialization Specialization

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0166 -0.0306*** -0.0140 0.0105 -0.0252** -0.0147

(0.0130) (0.0113) (0.00900) (0.0126) (0.0113) (0.00932)

Product and Variety FE? No No No Yes Yes Yes

Observations 1,712 1,712 1,712 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an OLS regression of the listed outcome variable on firm-level import competition as
described in the main text. All regressions include year and plant fixed effects, while columns (4) through (6) also include

number of product code and number of variety fixed effects. Quality Specialization is measured by OPit

(
~Sit,

~
η̃
j|g
it

)
,

while Relative TFPQ Specialization is measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR Specialization

measured by OPit

(
~Sit,

~
h
j|g
it

)
. Standard errors treat demand and production function estimates as data.

Table 10: Import Competition And Within Plant Efficiency (First Stage and IV)

(1) (2) (3) (4) (5) (6) (7) (8)

Quality Relative TFPQ Relative TFPR Quality Relative TFPQ Relative TFPR

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
Specialization Specialization Specialization ln

(
1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
Specialization Specialization Specialization

ZCHN
it 0.794*** 0.767***

(0.103) (0.103)

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0856** -0.119*** -0.0335 0.0890** -0.117*** -0.0276

(0.0381) (0.0365) (0.0259) (0.0398) (0.0386) (0.0272)

Product and Variety FE? No No No No Yes Yes Yes Yes

Observations 1,712 1,712 1,712 1,712 1,710 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Columns (1) and (4) report the first stage regression for the instrumental variable regressions discussed in the main text. AP F-statistic
for excluded instrument equals 58.95 for column (1) , and 55.31 in column (4). Columns (2) through (4) and (6) through (8) correspond to

an instrumental variables regression on the listed outcome variable, where ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined

by equation (44). All regressions include year and plant fixed effects, while columns (5) through (8) also include number of product code

and number of variety fixed effects. Quality Specialization is measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ Specialization is measured

by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR Specialization measured by OPit

(
~Sit,

~
h
j|g
it

)
. Standard errors treat demand and

production function estimates as data.

Note that the magnitude of the IV estimates in Table 10 are quite large. In particular, the point

estimates in column (6) of Table 10 imply that a doubling of Chinese imports would increase high

quality specialization by around 0.062 units. Since increases in quality specialization directly increase

plant-level TFPR by the same amount according to equations (39) and (41), this implies an increase in
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plant-level TFPR due to quality specialization of around 20 % of the average value of plant-level TFPR

in 2000.90 These magnitudes are such that the increases in Chinese import competition observed in

the data may actually explain the general trends in quality specialization documented in Figure 2. In

particular, since Chinese imports rose over the sample period by more than a factor of 25 (See Figure

3), this would imply a change of allocative quality efficiency of around 0.286 units which slightly larger

than the observed increase allocative quality efficiency documented in Figure 2 from 2000 to 2007.

Note, however, that since quality is negatively correlated with TFPQ, these reallocations will also

tend decrease plant-level TFPR, as more inputs are also moved to high TFPQ production lines. In

particular, according to column (7) of Table 10 a doubling of Chinese imports also tends to decrease

plant-level TFPR by 0.081 units, or 26 % of the average value of average plant-level TFPR in 2000,

through decreased specialization in relatively high TFPQ varieties. Note, however, that the net effect

of the reallocations, as described by column (4), is not statistically different from zero, implying that

overall these reallocations are approximately TFPR neutral.

Note, however, that the estimates described in Table 10 only consider the within-product code effect of

reallocations on plant-level TFPR. While multi-product plants tended to reallocate their inputs towards

product lines with slightly lower TFPR, compared to other plants producing varieties within the same

product code, note that most within-plant reallocations will occur across product codes, and therefore

the overall effect of reallocations on plant level TFPR will depend on whether the product codes a plant

is specializes in have relatively higher or lower values of TFPR.

In Table 11, below, I consider the overall effect of these within-plant reallocations on plant-level

TFPR. Column (1) examines product-code level specialization, by changing the outcome variable to

OPit

(
~Sit, ~h

g
t

)
= OPit

(
~Sit, ~̃ω

g
t

)
+OPit

(
~Sit, ~̃η

g
t

)
.91 This regression indicates that plants reallocated their

inputs towards product codes with higher TFPR, on average, in response to Chinese import competition.

In column (2), I examine the net effect of these reallocations on plant-level TFPR by changing the

outcome variable to OPit

(
~Sit,~hit

)
. These results, by construction, will equal the sum of the effects in

column (4) of Table 10 and column (1) of Table 11 (see equation (41)). Overall, these reallocations

appear to have slightly increased TFPR, although these changes are not statistically significant.

The general picture obtained from the effect of plant-level reallocations is they are generally TFPR-

neutral, although this net effect masks the huge changes in the gross composition of a firm’s output

set described in columns (6) and (7) of Table 10. Note, however, that the estimates in column (2)

only account for plant-level changes in efficiency due to reallocations. Overall plant-level TFPR gains

will also depend on changes in the unweighted average value of plant-level TFPR, hit, as described

by equation (39). Hence, in column (3), I change the outcome variable to the unweighted average of

plant-level TFPR, finding that Chinese import competition did not lead to any statistically significant

90Note that, following Pavcnik (2002), all product-level TFPR values are measured relative to the unweighted average
of TFPR across products in the first year of the sample.

91I consider the sum of the TFPQ and demand specialization effects because hgt = ω̃gt + η̃gt is measured in TFPR units
(see equation (35)), and therefore one can easily make across product code comparisons. On the other hand, since different
product codes are measured in different units (e.g. pounds versus units sold), differences in ω̃gt or η̃gt can be driven by
simple differences in units, making the interpretation of these terms problematic on their own.
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changes in this variable- in fact, the point estimates are actually consistent with TFPR decreases.92

The overall effect of Chinese import competition on plant-level TFPR is then described in column (4),

where the outcome variable is simply the sum of the outcome variables in columns (4) and (5), i.e.

hit = hit +OPit

(
~Sit,~hit

)
.

Table 11: Decomposing Impact of Chinese Imports of Firm Performance

(1) (2) (3) (4) (5) (6)

Product Code TFPR Average Total Standard Firm Log Total

Specialization Specialization Performance Performance TFPR Plant Revenue

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0525** 0.0190 -0.0900 -0.0710 -0.0928 0.00693

(0.0220) (0.0159) (0.0867) (0.0808) (0.0596) (0.0281)

Observations 1,712 1,712 1,712 1,712 1,712 1,712

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the listed outcome variable, where

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined by equation (44). All regressions include year, plant,

number of product code and number of variety fixed effects. Product code specialization is measured by OPit

(
~Sit,

~hgt

)
=

OPit

(
~Sit,

~̃ωgt

)
+OPit

(
~Sit,

~̃ηgt

)
, while total specialization is measured by OPit

(
~Sit, ~hit

)
= OPit

(
~Sit,

~
η̃
j|g
it

)
+OPit

(
~Sit,

~
η̃
j|g
it

)
+

OPit

(
~Sit,

~hgt

)
. Average TFPR is the plant-level unweighted average of variety-level TFPR, hit, while total TFPR is given by

hit = hit+OPit

(
~Sit,~hit

)
. Standard Firm TFPR is measured as ln

(∑
j∈Yit P

j
itQ

j
it

)
−

α
σ

1+α
σ

(βLlit + βKkit + βMmit). Standard

errors treat demand and production function estimates as data.

Overall, there is no statistically significant change in plant-level TFPR. Hence, standard approaches

to examining changes in plant-level performance, may conclude Chinese competition has no effect, or

potentially decreases, plant-level performance. To see this, note that one would actually find small

within-plant productivity losses using standard methods, as I show in column (5), where I change the

outcome variable to the standard measure of plant-level TFPR one would use if one did not have

plant-product level information, i.e. Plant TFPR ≡ ln
(∑

j∈Yit P
j
itQ

j
it

)
−

α
σ

1+α
σ

(βLlit + βKkit + βMmit).
93

Here, I obtain a decrease in standard plant-level TFPR with a similar magnitude - although the estimate

becomes statistically significant at the 10% level. As a result, with standard methods, one may conclude

that import competition decreases plant-level performance. This would misleading, however, as we know

from columns (1) and (2) of Table 10 that plants are generally improving their overall output quality

bundle, by allocating more resources to their relatively highest quality goods. However, producing an

92Note that one obtains very similar results even if one estimates the production function after allowing trade to
endogenously change the productivity process. See Appendix F.

93Note that standard measures of plant-level TFPR will implicitly incorporate within-plant specialization effects. To

see this, note that since Sjgit =
Xjgit
Xit

for X = (L,K,M), then one can use the revenue production function, (76), to show

that
P jgit Q

jg
it(

L
βL
it M

βK
it M

βM
it

) α
σ

1+α
σ

=
(
Sjgit

) α
σ

1+α
σ

(βL+βK+βM )

exp
(
ω̃jgit + η̃jgit

)
. Summing over all j ∈ Yit and then taking logs yields:

ln
(∑

j∈Yit P
j
itQ

j
it

)
−

α
σ

1+α
σ

(βLlit + βKkit + βMmit) = ln

(∑
j∈Yit

(
Sjgit

) α
σ

1+α
σ

(βL+βK+βM )

exp
(
ω̃jgit + η̃jgit

))
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output bundle with greater high quality goods generally involves a greater proportion of goods with

lower TFPQ, generating a net effect that is approximately TFPR neutral. Interestingly as I show in

column (6) import competition shocks appear to have no statistically significant effect on overall plant-

level revenues. Since increased Chinese import competition will tend to decrease overall plant level

revenues due to competition effects, for revenues to remain constant, it must be the case that these

reallocations towards a plant’s relatively higher quality goods are allowing the plant to shield itself from

the increased Chinese import competition.

The key takeaway from these results is that within-plant responses to Chinese import competition

in this industry are not so much productivity increasing, as has been emphasized by much of theoretical

literature such as Bernard et al. (2011), and Mayer et al. (2014), Mayer et al. (2016), but rather involve

reallocations towards a plant’s relatively highest quality goods. Since quality reallocations are costly,

and therefore partly imply revenue TFP loses due to the fact that quality and TFPQ are negatively

correlated, these reallocations generally do not improve plant-level performance using standard TFPR

measures. On the other hand, since plant-level revenues are not decreasing in response to the increases

in Chinese import competition, these reallocations must be generating some gains for the plants- in

particular, the increased quality specialization is likely allowing to maintain approximately constant

revenues in the face of increased Chinese import competition.

6.3 Robustness

In this section, I consider the robustness of the result that Chinese import competition leads plants

to specialize more in the production of high quality varieties, at the expense of the their high TFPQ

varieties. In particular, I show that these results are also robust to including potentially vertically

integrated plants, as well as alternative measures of Chinese import competition at the product level.

Similarly, I show that these results also are also robust to alternative methods for production function

estimation, as well reasonably robust to an alternative approach to estimating within plant reallocations

that allows from differences in materials price and wages across production lines.

6.3.1 Potentially Vertically Integrated Plants

Since the approach to estimating multi-product firms developed in this paper is not appropriate for

vertically integrated multi-product producers that sell some of their inputs, in the baseline estimates

described in Table 10 I drop all plants that produce outputs sets that could potentially indicate vertical

integration.94 Note, however, that this may be throwing away important information. In particular,

even though these plants produce output sets that could be vertically integrated, they may still be

treating these product sets as separate production lines. For example, Atalay et al. (2014) find that

only around one half of vertically integrated firms ship upstream inputs to their downstream plants.

As a result, simply dropping all potentially vertically integrated plants may be overly conservative.

In Table 12, below, I re-estimate the baseline specialization regressions without dropping potentially

94For details on the construction of the potentially vertically integrated variable, see Appendix B.
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vertically integrated plants.

In general, the qualitative results in Table 12 are not all that different from the baseline estimates in

Table 10. While the the magnitude of the IV regressions are slightly smaller with vertically integrated

firms, either indicating that this subpopulation is less affected by import competition, or vertical inte-

gration itself is leading to measurement error in the degree of specialization. That said, the fact that

including this subsample also leads to point estimates consistent with increased quality specialization

(and less TFPQ specialization) is reassuring.

Table 12: Import Competition And Within-Firm Efficiency (First Stage and IV)

(1) (2) (3) (4)

Quality Relative TFPQ Relative TFPR

Chinese Imports Specialization Specialization Specialization

ZCHN
it 0.780***

(0.0744)

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0581* -0.0662** -0.00812

(0.0326) (0.0332) (0.0232)

Observations 2,510 2,510 2,510 2,510

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Column (1) reports the first stage regression for the instrumental variable regressions discussed in the main text.
AP F-statistic for excluded instrument equals 109.93. Columns (2) through (4) correspond to an instrumental variables

regression on the listed outcome variable, where ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined by

equation (44). All regressions include year, plant, number of product code and number of variety fixed effects. Quality

Specialization is measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ Specialization is measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR Specialization measured by OPit

(
~Sit,

~
h
j|g
it

)
. Standard errors treat demand and

production function estimates as data

6.3.2 Alternative Measures of Chinese Import Competition

In Table 13, below, I consider two alternative measures of Chinese import competition: the average

value of log chinese imports by product, and the the revenue weighted sum of log Chinese imports by

product. This is in part to verify that a) there is nothing special about the the particular way I am

defining plant-level import exposure that is leading to my results and b) to examine whether there

are different effects depending on whether a plant faces more competition is it’s high-revenue product

lines. Since this measure of plant level import competition is scaled slightly differently, I instead use

ZAltCHN
it = 1

Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,CHN,t

)
as an instrument. In general, these results are fairly

similar to the baseline, with the revenue weighted measure of import competition leading to slightly

larger specialization effects.
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Table 13: Import Competition And Within-Firm Efficiency (First Stage and IV)

(1) (2) (3) (4) (5) (6) (7) (8)

Quality Relative TFPQ Relative TFPR Quality Relative TFPQ Relative TFPR
1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
Specialization Specialization Specialization

∑
j∈Yit α

jg
it ln

(
IMg

IND,CHN,t

)
Specialization Specialization Specialization

ZAltCHN
it 0.731*** 0.702***

(0.0986) (0.117)
1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
0.109** -0.0951** 0.0137

(0.0422) (0.0398) (0.0316)∑
j∈Yit α

jg
it ln

(
IMg

IND,CHN,t

)
0.113** -0.0990** 0.0143

(0.0467) (0.0432) (0.0330)

Observations 1,710 1,710 1,710 1,710 1,710 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Columns (1) and (5) report the first stage regression for the instrumental variable regressions discussed in the main text. AP F-statistic
for excluded instrument equal 54.90 in column (1) and 36.20 in column (5). Columns (2) through (4) and (6) through (8) correspond to an

instrumental variables regression on the listed outcome variable, where ZAltCHN
it = 1

Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,CHN,t

)
. αjgit denotes

the revenue share of variety j ∈ Λgit sold by firm i. All regressions include year, plant, number of product code and number of variety fixed

effects. Quality Specialization is measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ Specialization is measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see

equation (41). Relative TFPR Specialization measured by OPit

(
~Sit,

~
h
j|g
it

)
. Standard errors treat demand and production function estimates

as data

6.3.3 Alternative Approaches to Production Function Estimation

In this section, I examine whether alternative approaches to estimating the production function

modify my baseline results. In particular, a key assumption used in the production function estimation

approach outlined in Section 5, is that productivity follows an exogenous AR(1) process, ωjit = ρg0 +

ρωji,t−1 + ξjit, where ρg0 is product-code specific mean, and ρ is the persistent of productivity shocks.

Since this approach directly restricts the manner if which TFPQ may vary across firms and time, and

therefore could be driving my results, I consider two alternative estimation strategies that relax these

restrictions.

Strategy 1- Endogenous Productivity as in De Loecker (2013) and De Loecker et al. (2016): First,

I modify the law of motion to include lagged tariffs and lagged Chinese imports, ωjgit = ρg0 + ρωjgi,t−1 +

β0tariffgt−1 + β1 ln
(∑

g∈Λit
IMg

China,t−1

)
+ ξjgit , leading to the augmented estimating equation:

yjit = ρg0 + ρyji,t−1 + βL

(
l̂jit − ρl̂

j
i,t−1

)
+ βK

(
k̂jit − ρk̂

j
i,t−1

)
+ βM

(
m̂j
it − ρm̂

j
i,t−1

)
+ β0tariffgt−1 + β1 ln

 ∑
g∈Λi,t−1

IMg
China,t−1

+ ξjit,
(45)

which, as before, is estimated using nonlinear GMM.95

The rationale for including these extra controls in the law of motion for productivity is to control for

changes in plant-level productivity that are directly driven by investment decisions within a plant. Since

some recent studies, including Bloom et al. (2016), have found that trade liberalization directly leads to

95After including these extra variables in the law of motion, the estimation algorithm proceeds exactly as described
for the baseline results described in Section 5, I.e. I also include dummies for the number of products to control for
potential economy of scope effects, and de-mean the data within 5-digit product code to deal with the product-code
specific intercepts.
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plant level productivity improvements through R&D, the evolution of productivity may directly depend

on how exposed plants are to trade. While ideally one could deal with this by including direct controls

for innovation effort in the law of motion, as in Doraszelski and Jaumandreu (2013), who observe R&D

expenditures, since I do not have this sort of data, I follow De Loecker et al. (2016) and control for

these effects indirectly, by including trade controls in the law of motion.

Strategy 2 -Variety Fixed-Effects as in Blundell and Bond (2000): Rather than directly modelling

the evolution of the productivity process, one can also relax the implicit restrictions on productivity

by allowing each variety to have its own product-specific mean in the AR(1) process, i.e. ωjgit =

ρjg0i+ρω
jg
i,t−1+ξjgit , where ρjg0i is the variety-specific fixed effect. This approach requires that the persistence

of productivity be the same for all products, as do all of the previous methods, although allowing for

variety-specific means may allow for richer dimensions of productivity differences across varieties within

a product code.

To account for variety-specific fixed effects in the productivity process, I follow Blundell and Bond

(2000), and estimate the “rho-differenced” production function model after taking first differences, i.e.:

∆yjgit = ρ∆yjgi,t−1 + βL

(
∆̂ljgit − ρ∆l̂jgi,t−1

)
+ βK

(
∆k̂jgit − ρ∆k̂jgi,t−1

)
+ βM

(
∆m̂jg

it − ρ∆m̂jg
i,t−1

)
+ ∆ξjgit ,

(46)

where ∆ is the time-differencing operator. The above model can then be estimated by nonlinear GMM

using the yjgi,t−2, ljgi,t−2, kjgi,t−2, and mjg
i,t−2 as instruments.96

Since it is well known that lagged levels of inputs tend to be weakly correlated with (quasi) differences,

and therefore simply using the second lags as instruments tends to perform poorly due to finite sample

bias, I follow Blundell and Bond (1998) and Blundell and Bond (2000) and use a system GMM estimator

to estimate the production function parameters, where I augment the first-differenced moments from

(46), with the additional level restrictions E
(
∆xi,t−1

(
ρjg0i + ξjgit

))
= 0, where x is a product-level output

or input.97 98

Results: In Figure 4 and Table 14, I plot the correlation between TFPQ and quality implied by these

alternative approaches to production function estimation, as well as the estimated impact of Chinese

import competition on relative TFPQ specialization, respectively. Note that these results barely differ

from the baseline estimates in Figure 1 and Table 10. The predicted slope between TFPQ and quality

in Figure 4 differs in by at most 0.1 units compared to the baseline, and the impact of Chinese import

competition in Table 14 differs by, at worst, 0.006 units, compared to my baseline results.

96Note that one can also include ki,t−1 as an instrument as long as plant-level capital is predetermined, which I do in
my actual estimation procedure. I also include ∆Zgt and ∆Zgt−1, the current and lagged differences of my input price
instruments, in the instrument set, as the moments should help identify the materials input elasticity.

97See Blundell and Bond (2000) for a discussion of the validity of these extra moment restrictions, a sufficient condition
for which is that output and input use evolve according to a jointly stationary process.

98I use a nonlinear GMM estimator, where I directly minimize the GMM criterion function with respect to each of the
structural parameters. Note that this differs slightly from Blundell and Bond (2000), who use a two-step method where
in the first-step they recover composites of structural parameters using linear system GMM (e.g. βl×ρ, which acts as the
“reduced-form” coefficient on the lagged difference of labour input). Since the structural parameters are over-identified
in this case, they then recover estimates of the structural parameters using a second-stage minimum-distance estimator.
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Table 14: Import Competition and Within-Firm Efficiency: Productivity Process Robustness

(Endo Prod) (Blundell Bond)

Relative TFPQ Relative TFPQ

Specialization Specialization

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.115*** -0.110***

(0.0381) (0.0357)

Observations 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an instrumental variables regression with

OPit

(
Sjgit ,∆gt

ω̃jgit

)
as the outcome variable, and ln

(
1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is in-

strumented by ZCHN
it , defined by equation (44). All regressions include year, plant,

number of product code and number of variety fixed effects. Column (1) uses pro-
ductivity estimates obtained from the extended endogenous productivity model (45).
Column (2) uses productivity estimates obtained from the modified Blundell and Bond
(2000) approach to production function estimation described in the main text. Stan-
dard errors treat demand and production function estimates as data.

Figure 4: Negative Correlation between TFPQ and Quality: Alternative Methods

Notes: Standard errors of slopes, adjusted for two-way clustering by plant and product code, reported in parentheses. Quality refers
to the year-product code demeaned residual from (28), while TFPQ refers to the year-product code demeaned residual from (31).
Panel (1) estimates TFPQ using the endogenous productivity model (45), yielding point estimates of βL = 0.431, βK = 0.102, and
βM = 0.692. Panel (2) estimates productivity using the modified Blundell and Bond (2000) estimation approach discussed in the main
text, yielding point estimates of βL = 0.671, βK = 0.0174, and βM = 0.460. Scatter plots and regressions are at the level of an individual
plant-product.

Even though these changes in second stage estimates are fairly small, there are sizeable differences

in the production function coefficients, with βL varying between 0.374 (baseline) to 0.671 (Blundell and

Bond), βk varying between 0.0174 (Blundell and Bond) to 0.102 (endogenous productivity), and βM

varying from 0.460 (Blundell and Bond) to 0.780 (baseline).99 As a result, it appears that the exact

99Note that while the negative point estimate for the Blundell and Bond estimator is problematic from for constructing
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method used to identify the production function is not a key driver of my results, as my estimates do

not appear to be all that sensitive to estimated production function parameters.

6.3.4 Within-Plant Input Price Variation

Note that my approach to estimating within-plant TFPQ variation and input shares assumes that

materials prices are constant across products within a firm. While this assumption is primarily driven

by data limitations, note that if unobserved within-plant input price dispersion is driven by differences

in output quality across products, then I may actually be overstating the negative correlation between

TFPQ and quality within plants. In particular, recall from Section 3.3.2 that if there is within-plant

input price dispersion, then as long as each plant is a price taker in the input markets, then the share

of materials going into production line j should be given by:

M j
it =

λjitY
j
it

W jM
it∑

k∈Yit
λkitY

k
it

WkM
it

Mit. (21)

Note that the above implies that input allocation rule (9) will allocate too many inputs to production

lines with high material input costs, and too few materials to low cost production lines. As a result, this

will make TFPQ appear smaller in production lines with expensive inputs, and larger in production

lines with cheap inputs. If most of this input price variation is driven by quality differences across

production lines, in the sense that producing high quality inputs requires more expensive materials,

then this unobserved input price variation could largely explain the negative correlation between TFPQ

and quality within a plant.

To determine whether this sort of unobserved input price variation is driving my results, I attempt

to proxy for the unobserved input price variation within multi-product plants, using information on the

input prices charged by single product plants, as proposed in Section 3.3.2. In particular, I use data on

output quality, input prices, and location to predict log materials prices in the following OLS regression

for the subset of single product plants:

ln(WM
it ) = β0η̂

j
it + β1

(
η̂jit
)2

+ β2

(
η̂jit
)3

+ θg + αt + γs + εit, (47)

where η̂jit is the estimated demand residual from (28) for single product plant i, and θg, αt and γs are

product code, time, and state fixed effects, respectively.

I then use the out-of-sample predicted values from (22) at the product-level to estimate within-plant

inputs prices. Letting Ŵ jM
it denote the exponentiated predicted price of materials for product j ∈ Yit,

I then allocate materials across production lines using the modified input share formula:

M̂ j
it =

λjitY
j
it

Ŵ jM
it∑

k∈Yit
λkitY

k
it

ŴkM
it

Mit. (48)

TFPQ estimates, the results change very little if I instead treat this as a zero for calculating TFPQ, or as a very small
positive number such as 0.01.
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Since this changes the quantity of inputs allocated to each production line, I then re-estimate the

production function using these new input shares, and calculate the new implied values of product

level TFPQ. The modified correlations between quality and TFPQ are reported in columns (3) and

(4) of Table 15, below. Unsurprisingly, the negative correlation between TFPQ and quality becomes

somewhat smaller, both across products and within-plants. However, the magnitude of the adjustment

is not particularly large, as the unadjusted correlation, reported in Columns (1) and (2), only differs

from the adjusted correlations by around 0.1 units, which is a difference of around 5% of a standard

deviation of TFPQ dispersion.

Table 15: TFPQ and Quality Correlations: Accounting For Within-Firm Price Dispersion

(1) (2) (3) (4) (5) (6)

TFPQ TFPQ TFPQ TFPQ TFPQ TFPQ

Quality -2.313*** -2.908*** -2.274*** -2.794*** -2.260*** -2.766***

(0.141) (0.0865) (0.142) (0.0783) (0.142) (0.0773)

Observations 11,172 11,172 11,172 11,172 11,172 11,172

Plant FE NO YES NO YES NO YES

Materials Price Adjustment NO NO YES YES YES YES

Wage Adjustment NO NO NO NO YES YES

Standard errors clustered separately by plant and product code

*p<0.1; **p<0.05; ***p<0.01
Notes: Each Column presents an OLS regression of TFPQ on Quality (demeaned within product-code and year), for
the subset of products only produced by multi-product plants. Columns (1) and (2) calculates TFPQ using the baseline
approach (without accounting for within-plant input price dispersion) described in Section 5. Columns (3) and (4) estimate
TFPQ after adjusting material inputs to account for input price dispersion using equation (48). Columns (5) and (6)
adjust within firm material and labour inputs to account for input price and wage dispersion. Standard errors treat
demand and production function estimates as data.

Since accounting for input price dispersion slightly dampens the negative correlation between TFPQ

and quality, it is worth examining whether this adjustment affects my estimates of the impact of Chinese

import competition on plant-level specialization. In columns (1) and (2) of Table 16, below, I re-estimate

(43) by 2SLS, after re-estimating the production function and modifying the materials input shares to

account for within-plant input price dispersion. Note that since materials input shares now differ from

the labour and capital input shares, which are still given by the baseline formula (9), I can calculate

allocative efficiency using either labour/capital input shares, as I do in column (1), or using materials

shares, as I do in column (2).

Generally, the qualitative pattern for TFPQ specialization is not all that different from the un-

adjusted case, although there appears to be a much smaller effect once I measure input shares using

materials shares, rather than labour shares.100 We can see the same pattern in the quality regressions,

with the effect becoming smaller once one measures allocative efficiency using materials shares rather

100While I lose statistical significance at standard levels for this regression, note that these results are quite close to
significant at the 10 % level, with an associated P-value of 0.119
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than labour shares, leading to a loss of statistical significance. Since it is not entirely obvious that

materials input shares act as a better proxy for efficiency than labour shares, these estimates generally

imply that unobserved within-firm price variation is not likely to be a key driver of my baseline results,

at least in terms of the allocation of labour and capital across production lines.

Table 16: Import Competition and Within-Firm Efficiency: Input Price Robustness

(1) (2) (3) (4) (5)

Relative Relative Relative Relative Relative

TFPQ TFPQ TFPQ TFPQ TFPQ

Specialization Specialization Specialization Specialization Specialization

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.100*** -0.0579 -0.0985*** -0.0560 -0.0961***

(0.0374) (0.0377) (0.0370) (0.0374) (0.0364)

High Quality High Quality High Quality High Quality High Quality

Specialization Specialization Specialization Specialization Specialization

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0890** 0.0538 0.0890** 0.0538 0.0887**

(0.0398) (0.0423) (0.0398) (0.0423) (0.0395)

Observations 1,710 1,710 1,710 1,710 1,710

Materials Price Adjustment YES YES YES YES YES

Wage Adjustment NO NO YES YES YES

Standard Shares YES NO YES NO NO

Materials Shares NO YES NO YES NO

Labour Shares NO NO NO NO YES

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Columns (1) through (5) correspond to an instrumental variables regression on the listed outcome variable, where

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined by equation (44). All regressions include year, plant, number of

product code and number of variety fixed effects. Relative TFPQ and High Quality Specialization measured by OPit

(
~SXit ,

~
ω̃
j|g
it

)
and

OPit

(
~SXit ,

~
η̃
j|g
it

)
, respectively, where ~SXit denotes the vector input shares across production lines within plant i for input X. Columns

(1) and (3) use the share of capital input for the share terms, columns (2) and (4) use the share of materials inputs, while column (5)

uses the share of labour inputs. Columns (1) and (2) calculate ω
j|g
it after adjusting material inputs to account for material input price

dispersion using equation (48). Columns (3) to (5) adjust within plant material and labour inputs to account for material input price
and wage dispersion. Standard errors treat demand and production function estimates as data.

As a further robustness check, I also allow for within plant wage dispersion, modifying the above

procedure to account for the the plant-level information I have on wages.101 Implicitly, using this

approach to determine within-plant wage dispersion requires that labour be a static input. Although

this is unlikely to hold exactly in practice, and therefore is an imperfect approach, it is still worth

considering whether heterogeneous wages across production lines may explain my results.

101Wages are in terms of rupees per manday worked.
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However, as one can see in columns (5) and (6) of Table 15, also allowing for within plant wage

dispersion barely changes the TFPQ and quality correlations, relative to the case where I only accounted

for materials price dispersion. Similarly, the Chinese import competition results reported in columns (3)

to (5) of Table 16 are not all that different from the first two columns. Measuring allocative efficiency

using materials shares leads to the smaller, and generally statistically insignificant effects, as was the

case when I only accounted for materials price dispersion, while using labour or capital shares does not

change the estimates all the much, relative to the baseline estimates in Table 10. In general, it appears

that accounting for input price dispersion is a second-order concern for the baseline results.

6.4 Extensive Versus Intensive Margin Adjustments

In this section, I examine whether the reallocations towards quality are primarily driven by intensive

margin adjustments, i.e. the reallocation of inputs between the same set of product codes, or extensive

margin adjustments, i.e. reallocation of inputs through product adding and dropping. For this purpose,

I partition the set of products produced by each firm at time t and t − 1 into three non overlapping

categories: 1) Dropped products, denoted by Dit ⊂ Yi,t−1, and corresponding to the set of products that

were produced in t−1 but dropped at time t, 2) New products, denoted by Nit ⊂ Yit, and corresponding

to the set products that were produced at time t but not produced at time t − 1, and 3) Constant

products, denoted by Cit, and corresponding to the set of products that were produced in both t − 1

and t.102 Further define the within-category X ∈ (N,D,C) share as S
jg|X
it ≡ Sjgit

SXit
, where SXit denotes the

total input share of products belonging to category X ∈ (N,D,C) at time t. I then make use of the

following decomposition, similar to that in Melitz and Polanec (2015), for changes in the plant-level OP

covariance, the derivation for which can be found in Appendix G:

∆OPit

(
~Sit, ~xit

)
=
∑
j∈Cit

S
jg|C
it x̂jgit −

∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1︸ ︷︷ ︸

(I): Intensive Margin

+ SDit

(∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1 −

∑
j∈Dit

S
jg|D
i,t−1 x̂

jg
i,t−1

)
︸ ︷︷ ︸

(D): Product Dropping

+ SNit

(∑
j∈Nit

S
jg|N
it x̂jgit −

∑
j∈Cit

S
jg|C
it x̂jgit

)
,︸ ︷︷ ︸

(N): New Products

(49)

102When a plant drops varieties of the same product code g over time, I“drop” the variety with the most different value
of ωjgi,t−1, when compared with the values of ωjgit observed within product code g in the following period. More formally, if

a plant drops V varieties of the same product code g, I calculate the minimum pairwise difference between ωjgi,t−1 of each

variety j ∈ Λgi,t−1, and the estimated value of ωjgit of each variety j ∈ Λgit. The set of varieties with the V largest values
of this minimum pairwise difference are then classified as the “dropped” products. Similarly, if a plant adds N varieties
of the same product code, I consider the N varieties with the largest minimum pairwise differences as the new products
at time t.
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where x̂jgit =
(
xjgit − 1

Jit

∑
j∈Yit x

jg
it

)
for xjit is a particular product-level performance measure, e.g. xjgit ∈

(ω̃gt , η̃
g
t , ω̃

j|g
it , η̃

j|g
it )

The intensive margin term (I) in equation (49) is simply an estimate of the difference between the

OP covariance term that would have occurred if there was no product adding or dropping. To account

for changes in specialization due product switching, the product dropping term (D) then increases as

a plants drop products that are relatively low performing compared to their products that are sold in

both periods, while the new product term (N) increases as plants add new products that are higher

performing than constant product sets. Conditional on dropping a set of relatively low performing

products or adding a set of relatively high performing goods, note that that the extensive margin terms

(D) and (N) are also increasing in the share of inputs allocated to dropped products and new products,

respectively. Together, these two terms capture the portion of the change in the OP covariance that is

due to changes in the plant’s set of produced products.

I decompose the overall change in plant-level specialization in quality and relatively high TFPQ

varieties due to Chinese import competition into extensive and intensive margin components in Tables

17 and 18, below. First, in column (1) I re-estimate (43) in first-differences, rather than with plant-

fixed effects, to obtain an estimate of the full effect of Chinese import competition on plant level

specialization.103 In columns (2) through (4), I then change the outcome variable to the intensive margin

term (I), the product dropping term (D), and the new product product (N) from (49), respectively.

Note that by construction, the point estimates in columns (2) through (4) will sum to the overall effect

estimated in column (1). I also provide the same set of regressions with the Chinese import competition

variable modified to the average of log imports, in columns (5) through (8), respectively, to see whether

slight modifications to the way import competition is measured change the weights put on intensive

versus extensive margin effects.

Regardless of the particular method used to measure import competition, Tables 17 and 18 indi-

cate that the vast majority of the reallocations towards quality, and away from relatively high TFPQ

products, are due to product dropping effects, where plants facing larger increases in import competi-

tion are more likely to drop lower quality goods, or drop lower quality goods that previously used a

larger share of resources. On the other hand, note that product dropping accounts for a smaller share

of the reallocations away from high TFPQ varieties, which would be consistent with plants dropping

products based on their relatively low position in quality space, rather their relatively high position in

TFPQ space. As a result, while the TFPQ reallocations incorporate some sizeable intensive margin

effects, accounting for around 30 to 60 % of the total re-allocative effect across the two specifications,

there appears to be a much smaller role for intensive margin adjustments in quality specialization. In

particular, the estimates in column (5) of Table 17 imply that intensive margin adjustments account

103For sample comparability with Table 10, which includes the randomly sampled plants that are not always observed
in consecutive periods, the first differences in Tables 17 and 18 are with respect to plant time, i.e. for each plant i, t− 1
refers to the most recent year I observe plant i before time t. To appropriately control for time trends in this specification,
I also include current and lagged calendar year fixed effects. A standard first-differences specification (i.e. differences
with respect to calendar time), can be found in Appendix G1, where plants with “holes” are dropped. Note that the
qualitative results are quite similar across specifications, although the standard first differences estimates in Appendix G1
display larger specialization effects.
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for just under 25 % of the reallocations towards quality, while the estimates in column (2) imply that

only around 5% of the change in quality specialization is due to intensive margin adjustments.

Table 17: Plant-Level Changes in Quality Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Quality Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0815** 0.00552 0.0829** -0.00685

(0.0363) (0.0349) (0.0358) (0.0310)

∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
0.0765* 0.0180 0.0867** -0.0282

(0.0393) (0.0334) (0.0356) (0.0346)

Observations 989 989 989 989 989 989 989 989

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome, where ∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ∆ZCHN

it , defined by equation (44), and ∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

China,t

)
is instrumented by ∆ZAltCHN

it =

∆ 1
Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,CHN,t

)
, where ∆ is the time differencing operator according to plant time (See footnote 103). All

regressions include fixed effects for current and lagged calendar year. AP F-statistic for excluded instrument equals 63.85 for columns (1)

through (4) and equals 62.19 for columns (5) through (8). Total Specialization refers to ∆OPit

(
~Sit,

~
η̃
j|g
it

)
, while Intensive Margin, Product

Dropping, and New Product refer to terms (I), (D) and (N) in equation (49), respectively, with xjgit = η̃
j|g
it . Standard errors treat demand and

production function estimates as data.

Table 18: Plant-Level Changes in Relative TFPQ Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Relative TFPQ Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.108*** -0.0363 -0.0548** -0.0167

(0.0368) (0.0284) (0.0275) (0.0326)

∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
-0.0810** -0.0494* -0.0511* 0.0195

(0.0393) (0.0282) (0.0274) (0.0353)

Observations 989 989 989 989 989 989 989 989

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome, where ∆ ln
(

1
Git

∑
g∈Λit

IMg
China,t

)
is instrumented by ∆ZCHN

it , defined by equation (44), and ∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

China,t

)
is instrumented by ∆ZAltCHN

it =

∆ 1
Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,CHN,t

)
, where ∆ is the time differencing operator according to plant time (See footnote 103). All

regressions include fixed effects for current and lagged calendar year. AP F-statistic for excluded instrument equals 63.85 for columns (1)

through (4) and equals 62.19 for columns (5) through (8). Total Specialization refers to ∆OPit

(
~Sit,

~
ω̃
j|g
it

)
, while Intensive Margin, Product

Dropping, and New Product refer to terms (I), (D) and (N) in equation (49), respectively, with xjgit = ω̃
j|g
it . Standard errors treat demand and

production function estimates as data.

Note that columns (4) and (8) of Tables 17 and 18 indicate that adding new products may have

61



played very little role in these reallocations towards quality. Note, however, that this is not entirely true,

as the quality reallocations are partly driven by product switching rather than product dropping. To see

this, in Table 19, below, I change the dependent variable in these regression to changes in the number

of varieties produced by a firm. While the point estimates for the effect of Chinese import competition

on the number of products are generally negative, these regressions are not statistically significant,

implying that many of the plants that are dropping products must also be adding new products.104 As

a result, the product dropping term (D) in (49) may also be increasing due to plants dropping products

that previously used larger shares of their resources. In columns (4) and (7) of Tables 19, I find that this

is generally the case, by changing the outcome variable to the share of inputs previously allocated to

dropped products. In particular, when I measure import competition using the average of log imports

within the plant, I find statistically significant increases in the share of inputs previously allocated to

dropped products in both columns (4) and (7) of Table 19.105

Table 19: Dropping Products versus Product Switching

(1) (2) (3) (4) (5) (6) (7)

Number of

Varieties ∆SCit SNit SDi,t−1 ∆SCit SNit SDi,t−1

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.000375 0.00511 0.0297* 0.0272 0.000895 0.0253* 0.0298*

(0.0590) (0.0109) (0.0177) (0.0184) (0.0109) (0.0150) (0.0159)

Number of

Varieties ∆SCit SNit SDi,t−1 ∆SCit SNit SDi,t−1

∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
-0.0649 0.000261 0.0386** 0.0425** 0.000688 0.0334** 0.0328**

(0.0540) (0.0121) (0.0170) (0.0180) (0.0119) (0.0143) (0.0151)

Drop at least one product ? No No No No Yes No Yes

Add at least one product ? No No No No Yes Yes No

Observations 989 989 989 989 664 634 628

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an instrumental variables regression on the described outcome, where

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ∆ZCHN

it , defined by equation (44), where ∆ is the time differencing operator

according to plant time. All regressions include fixed effects for current and lagged calendar year. AP F-statistic for excluded
instrument equals 63.85. Columns (1) through (4) include all plants, column (5) only includes plants who either drop a product
or add a drop, column (6) only includes plants that add a product, and column (7) only includes plants that drop a product.
Standard errors treat demand and production function estimates as data.

Finally, Table 19 also considers regressions where the outcome variable is the change in inputs

104Note that there is a lot of product switching in the data, with 60 % of the observations in these regressions involving
plants that both added and dropped products.

105While I do not obtain statistical significance at conventional levels in column (4) when I measure import competition
using the natural log of average import competition, note that I do obtain statistically significant effects in column (7)
(at the 10 % level) when I restrict the sample to only contain plant-years where at least one product is dropped, and the
magnitude of the effect in this column is not all that different from that displayed in column (4).
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allocated to old products over time (∆SCit ), as well as the share of inputs allocated to new products

(SNit ), to examine whether the resources freed up by product dropping are being reallocated towards old

or new products. In general, I find that increased import competition generally does not change the

share of resources allocated to old products, but rather, tends to increase the share of inputs allocated

to new products. Interestingly, the share of inputs being allocated towards new goods in response to

Chinese import shocks is approximately the same magnitude as the share of inputs previously used

in dropped products, implying that the increased quality specialization through product dropping is

partly driven by the reallocation of inputs towards new product lines, rather than old product lines.

Interestingly, this result is largely driven by the level of import competition in the new products, rather

than changes in import competition for old products. In particular, as I show in Appendix G1, if I

measure changes in Chinese import competition holding the product set fixed at its t− 1 level, i.e. only

measure changes in import competition for the dropped and constant product sets, then I no longer find

that import competition increases specialization in quality. As a result, it must be that the reallocation

towards quality is largely occurring through increased Chinese import competition in new varieties.

Note, however, that since these reallocations are generally occurring through product switching, this

makes sense. In particular, when a plant faces more import competition for its new varieties, it may

want to drop one of its other product lines, since this will free up dynamic inputs (e.g. labour and

capital) for use in the new production line. This will decrease its marginal costs in the new production

line, thereby allowing the plant to price the new product more competitively.

6.5 Alternative Approaches to Recovering Input Shares

In this section, I compare alternative approaches to recovering input shares to the approach proposed

in this paper. This comprises two key approaches - using revenue shares to approximate input shares,

as in Foster et al. (2008), or assuming that there is no productivity dispersion within a plant and using

this restriction to recover the input shares, as in De Loecker et al. (2016). Note that if one restricts

attention to homogeneous of degree φ > 0 production technologies as I have in this paper, then using

the approach described by De Loecker et al. (2016) to determine input shares has a simple closed form

expression: Sjit =
(Y jit)

1
φ∑

k∈Yit(Y
k
it)

1
φ

.106 For easier comparability across methods, I hold production function

parameters constant during this excericse, taking φ for use in this formula as the sum of βL, βK and

βM in Table 5.

Figure 5, below, produces the scatter plot of the inputs shares as recovered using the marginal cost

inversion described in this paper, versus those obtained from revenue shares, and those obtained from

the De Loecker et al. (2016) approach. Note that revenue shares are much more strongly correlated

with the shares obtained in this paper, than the shares obtained from De Loecker et al. (2016). On

the other hand, both approaches are still positively correlated with the shares obtained in this paper,

with revenue shares and the input inversion shares having a correlation coefficient of around 0.93, while

106One obtains this formula by substituting
Xjit
Xit

= Sjit for each X and j and ωjit = ωit for each j into the production
technology equation (2), summing over all j ∈ Yit, then dividing (2) by this sum.
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the De Loecker et al. (2016) and input inversion shares have a correlation coefficient of approximately

0.65.107

Figure 5: Comparison of Alternative Shares

Notes: Inversion shares are the input shares determined using the marginal cost inversion as described in Appendix C2. DGKP (2016)

shares are given by Sjit =

(
Y
j
it

) 1
φ

∑
k∈Yit (Y

k
it)

1
φ

.

The fact that revenue shares and the De Loecker et al. (2016) shares do not lead to the exact same

estimates of input shares naturally leads to the question of whether these alternative approaches to

recovering input shares lead to differences in productivity predictions. In Figure 6, below, I plot the

estimated kernel density plot of TFPQ estimated using the three different input share rules, demeaned

within 5-digit ASICC code, for all products products by multi-product plants.108 Surprisingly, the

differences in inputs shares matter very little in terms of determining the exact magnitude of TFPQ

dispersion.

At face value, this may mean that the exact method used to determine input shares may not matter

too much in practice. Note, however, that this is not necessarily true for all questions of substantive

interest. In particular, while the approach described in De Loecker et al. (2016) cannot deal directly

within changes in plant-level TFPQ specialization, since dispersion in TFPQ is ruled out by construction,

one could still use their approach to examine whether there are any changes in quality specialization

following a trade shock.

I consider this question in Table 20, below, where in column 1, I consider the same baseline quality

specialization regression described in Table 10, with the De Loecker et al. (2016) input shares replacing

the marginal cost inversion input shares. Interestingly, I find no significant effect of Chinese import

competition on quality specialization in this specification, implying that for some questions, the exact

technique used to recover the input shares can indeed matter.109

107Only multi-product plants are used to construct these statistics, as the correlation coefficient will always be one for
the subset of single product plants.

108I trim the 1st and 99th percentile of each distribution. Product codes that are only observed once are dropped when
estimating the densities.

109Note, however, that even if one were to find an effect of quality specialization using this approach, since this approach
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Figure 6: TFPQ dispersion: Alternative Shares

Notes: Kernel density plots of TFPQ by product, or ωjit ≡ ln(yjit) − ln(F ( ~Xj
it)). Inversion

shares are the input shares determined using the marginal cost inversion as described in

Appendix C2. De Loecker et al. (2016) shares are given by Sjit =

(
Y
j
it

) 1
φ

∑
k∈Yit (Y

k
it)

1
φ

. TFPQ is

demeaned within 5-digit product code. Only multi-product plants are included in the kernel
density plot.

Table 20: Plant-Level Changes in Relative Specialization: Alternative Shares

(IV) (IV) (IV) (IV)

Quality Quality Relative TFPQ Relative TFPR

Specialization Specialization Specialization Specialization

(DGKP Shr) (Rev Shr) (Rev Shr) (Rev Shr)

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0294 0.107*** -0.0992*** 0.00740

(0.0426) (0.0378) (0.0305) (0.0250)

Observations 1,712 1,712 1,712

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Columns (1) and (4) report the first stage regression for the instrumental variable regressions
discussed in the main text. Columns (1) through (3) construct input shares and well as TFPQ using

revenue shares. Column (4) determines input shares according to Sjit =

(
Y
j
it

) 1
φ

∑
k∈Yit (Y

k
it)

1
φ

. See the

notes on Table 10 for more details.

In columns (2) through (4), I consider the same exercise for quality, TFPQ, and TFPR specialization,

has to abstract from TFPQ dispersion within plant, this approach will like undervalue the costs of these reallocations,
given the robust negative correlation between TFPQ and quality within plants.
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where input shares are estimated using revenue shares, since this approach allows for TFPQ dispersion.

In this case, I find very similar effects to the baseline effects described in Table 10, likely due to the

fact that revenue shares are much more strongly correlated with the marginal cost inversion shares than

the De Loecker et al. (2016) shares. Overall, the general picture is that for some questions, such as the

overall magnitude of TFPQ disperson, the exact approach used to recover the input shares does not

matter much, although it can matter for some important questions, such as picking up trade induced

quality specialization within a plant.

7 Conclusion

In this this paper, I have developed a new approach to estimating product-level TFP for multi-

product firms in data sets where the allocation of inputs across production lines is unknown. The

approach, based on a standard differentiated goods model of price competition, only requires information

on firm-product level prices and quantities to be implemented. Since this information is becoming more

widely available in many firm and plant level datasets, the techniques developed here should be able to

help researchers interested in firm level productivity tackle a wider class of problems.

I then applied the approach to a panel of manufacturing plants in India from 2000-2007, finding

new evidence for the within-firm allocative gains from trade, emphasized by Eckel and Neary (2010),

Bernard et al. (2011), Mayer et al. (2014) and Mayer et al. (2016). In particular, I found that increased

Chinese import competition generated increased specialization in quality, where firms reallocated a

greater portion or their inputs towards relatively higher quality goods, but away from their relatively

high TFPQ goods. These findings provide new evidence for the quality upgrading effects of import

competition, previously explored by Amiti and Khandelwal (2013), although through a new margin: the

within-plant reallocation of inputs across high and low quality production line. Since these reallocations

towards quality are costly, in the sense that TFPQ is relatively lower for these varieties, overall these

reallocations tended to decrease plant level TFPQ. As a result, while these reallocations did not generate

sizeable productivity gains, they generally implied large gross changes in the composition of a plant’s

output towards higher quality goods. Given that I also found there to be statistically significant effect of

Chinese import competition on overall plant-level revenues, it must be that these quality reallocations

in part allowed the plant to shield itself from the increase in Chinese import competition.

The findings of this paper point towards a number of interesting paths for future research. Since

reallocations towards quality in this industry are primarily driven by product dropping, it would be

useful in future work to obtain a better understanding of what determines a plant’s product sets. This

would be particularly useful as I also find that product dropping is largely due to increased import

competition in new varieties, rather than direct import competition in the particular varieties being

dropped. This particular channel for generating quality upgrading within the plant, which relies on

across-product linkages in the particular product sets, a plant chooses to produce, is largely unstudied.

As a result, further explorations along these lines would be valuable.

Moreover the negative correlation between quality and TFPQ uncovered in this paper, which is also
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documented in Forlani et al. (2016) and Jaumandreu and Yin (2016), is a relatively surprising finding

worthy of further analysis. Whether this reflects an explicit choice by the plants, i.e. explicitly aiming

to cut the costs of products without widespread consumer appeal, or a technological constraint, such

as high quality goods simply requiring more inputs, has implications for the patterns of specialization I

observe at the plant level. In particular, if the pattern reflects an explicit choice by plants, it would be

useful to determine if there are ways to change firms incentives to engage in both quality upgrading and

productivity upgrading. These sorts of policies could then augment the quality-focusing gains from trade

uncovered in this paper, through subsequent efficiency gains. On the other hand, if this relationship is

entirely technological in nature, within-firm allocative gains, as well as the across-firm allocative gains

uncovered in other papers, may be limited by the quality-cost tradeoff uncovered in this paper.

Similarly, while the negative correlation between TFPQ and quality was uncovered using a very

simple demand system, it would be useful to examine if one can uncover this relationship with more

flexible demand structures, that allow different types of consumers to value quality and low-prices

differently (e.g. low versus high income consumers). While the demand system considered in this paper

cannot allow for these sort of effects, the observed movement towards specialization in quality, could

have something to do with producers trying to capture different subsets of the market, and may have

implications for income inequality that are worthy of further analysis.
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8 Appendix

8.1 Appendix A: Proof of Lemma 1

Consider the following conditional cost-minimization problem (CM) for firms possessing an arbitrary

production technology Y j
it = exp(ωjit)F

(
~Xj
it

)
:

Min
Xit

∑
M∈M

∑
j∈Yit

WM
(
Mit, A

M
it

)
M j

it

subject to exp(ωjit)F
(
~Xj
it

)
≥ Y j

it , ∀j ∈ Yit∑
j∈Yit

Xj
it = Xit, ∀X ∈ K,

(CM)

where Mit =
∑

j∈YitM
j
it.

Any solution to (CM), will consist of an aggregate input vector for static inputs ~Mit, as well as an

input-share allocation for each input j ∈ Yit, ~S
j
it, where Sjit is a 1 × P vector of input shares going

into production line j. Let ~Sit denote the matrix of all input shares, with typical element (j,X) of ~Sit

being given by SjXit . Note that using this notation, ~Xj
it = ~Sjit ◦ ~Xit, where ◦ denotes element-by-element

multiplication of two vectors.

To prove Lemma 1, it is easier to break down the above problem into two parts. First consider the

following transformation function problem (TF):

maximize
~S−rit

Y r
it = exp(ωrit)F

1−
∑
j∈Y−rit

~Sjit

 ◦ ~Xit


subject to exp(ωjit)F

(
~Sjit ◦ ~Xit

)
≥ Y j

it , ∀j ∈ Y−rit

0 ≤ SJXit ≤ 1 ∀j ∈ Y−rit & ∀X ∈ (K,M) ,

(TF)

where 1 is a 1×P vector of ones, r ∈ Yit is an arbitrary good within firm i’s output set, Y−rit ≡ Yit \{r},
and ~S−rit is the matrix of input shares obtained after excluding the row corresponding to output r.

The objective function of (TF) evaluated at an optimal solution yields the transformation function

for output r, Y r
it = T̃ (~Y −rit ,

~Xit, ~ωit), which corresponds to the maximal level of output firm i can obtain,

given a vector of aggregate inputs ~Xit and some predetermined level of other outputs that firm i wishes

to produce, ~Y −rit .110

Rather than directly solving (CM) to obtain the conditional cost function, we may instead obtain

the cost function by first solving (TF), and the following problem:

Min
~Mit

∑
M∈M

WM
(
Mit, A

M
it

)
Mit

subject to Y r
it = T̃ (~Y −rit ,

~Xit, ~ωit).

(CM2)

110Note that the transformation function essentially describes the set of efficient aggregate-input and output vectors that
firm i may produce with the TFP vector ~ωit: see Diewert (1973).
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With this in mind, the input shares implied by (TF) will solve (CM) as long as the level of static

inputs in (TF) is chosen to solve (CM2). I use this property to prove Lemma 1:

Lemma 1. If Assumptions 1 through 6 hold, then there exists a solution to the firm’s conditional cost

minimization problem satisfying Xj
it = SjitXit ∀X ∈ (K,M), where Sjit ∈ [0, 1] and

∑
j∈Yit S

j
it = 1.

Proof. Consider the Lagrangian associated with (TF)

L = exp(ωrit)F

1−
∑
j∈Yrit

~Sjit

 ◦ ~Xit

+
∑
j∈Yrit

µjit

(
exp(ωjit)F

(
~Sjit ◦ ~Xit

)
− Y j

it

)
. (50)

Suppose that the vector of static inputs, ~Mit, is chosen to solve (CM2), which guarantees that at an

optimum 1−
∑

j∈Yrit
~Sjit > 0. The set of first-order necessary conditions for a solution to (TF) where all

production function constraints bind (µjit > 0 ∀j ∈ Yr
it) are then given by:

FOCjX
it

(
~Sit, ~µit

)
≡ exp(ωrit)

∂F ( ~Xr
it)

∂X
Xit − µjit exp(ωjit)

∂F ( ~Xj
it)

∂X
Xit = 0, (51)

P j
(
~Sit, ~µit

)
≡ Y j

it − exp(ωjit)F
(
~Xj
it

)
= 0, (52)

where I am making the substitution ~Xj
it = ~Sjit ◦ ~Xit. Note that the set of first-order conditions are

satisfied if FOCjX
it

(
~Sit, ~µit

)
= 0 ∀j ∈ Yit and ∀X ∈ (K,M), and P j

(
~Sit, ~µit

)
= 0 ∀j ∈ Yit.

Consider the following allocation ~S∗it and set of Lagrangian multipliers, ~µ∗it:

SjX∗it = Sj∗it =

(
µj∗it exp(ωjit)

) 1
1−φ

(exp(ωrit))
1

1−φ +
∑

k∈Yrit

(
µk∗it exp(ωkit)

) 1
1−φ

∀j ∈ Yr
it,∀X ∈ (K,M) , (53)

µj∗it = exp(ωrit − ω
j
it)


(

Y jit
exp(ωjit)

) 1
φ((

F ( ~Xit)
) 1
φ −

∑
k∈Yrit

(
Y kit

exp(ωkit)

) 1
φ

)


1−φ

∀j ∈ Yr
it. (54)

I now show that FOCjX
it

(
~S∗it, ~µ

∗
it

)
= P j

(
~S∗it, ~µ

∗
it

)
= 0 ∀j ∈ Yr

it and ∀X ∈ (K,M).

Since F is homogenous of degree φ, ∂F
∂X

is homogenous of degree φ− 1. Moreover, note that (53) im-

plies SjX∗it = Sj∗it ∀X ∈ (K,M), which implies ~Xj
it = Sj∗it

~Xit ∀j ∈ Yit.
111 Substituting these expressions

into (51) yields:

FOCjX
it

(
~S∗it, ~µ

∗
it

)
= exp(ωrit) (Sr∗it )φ−1 ∂F ( ~Xit)

∂X
Xit − µj∗it exp(ωjit)

(
Sj∗it
)φ−1 ∂F ( ~Xit)

∂X
Xit, (55)

where Sj∗it has been taken out of ∂F
∂X

since ∂F
∂X

is homogeneous of degree φ− 1. We can then write:

111In particular, note that (53) implies SrX∗it = Sr∗it =
(exp(ωrit))

1
1−φ

(exp(ωrit))
1

1−φ+
∑
k∈Yr

it
(µk∗it exp(ωkit))

1
1−φ

∀X ∈ (K,M).
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FOCjX
it

(
~S∗it, ~µ

∗
it

)
=
∂F ( ~Xit)

∂X
Xit

(
exp(ωrit) (Sr∗it )φ−1 − µj∗it exp(ωjit)

(
Sj∗it
)φ−1

)
. (56)

Note that (53) implies that srX∗it = sr∗it =
(exp(ωrit))

1
1−φ

(exp(ωrit))
1

1−φ+
∑
k∈Yr

it
(µk∗it exp(ωkit))

1
1−φ

∀X ∈ (K,M). Substi-

tuting this expression and (53) into (56) yields, after cancelling and collecting like terms:

FOCjXit

(
~S∗it, ~µ

∗
it

)
=
∂F ( ~Xit)

∂X
Xit

(exp(ωrit))
1

1−φ +
∑
k∈Yrit

(
µk∗it exp(ωkit)

) 1
1−φ

1−φ

(1− 1) = 0.

Hence, FOCjX
it

(
~S∗it, ~µ

∗
it

)
= 0 ∀j ∈ Yr

it and ∀X ∈ (K,M).

Next I show the same holds for all P j
(
~S∗it, ~µ

∗
it

)
= 0. Substitute ~Xj

it = Sj∗it
~Xit into (52), and use the

fact that F is homogeneous of degree φ, yielding:

P j
(
~Sit, ~µit

)
= Y j

it − exp(ωjit)
(
Sj∗it
)φ
F
(
~Xit

)
. (57)

To obtain an expression for Sj∗it in terms of exogenous parameters, multiply (54) by exp(ωjit), and

then take this equation to the power of 1
1−φ , yielding:

(
µj∗it exp(ωjit)

) 1
1−φ = (exp(ωrit))

1
1−φ

(
Y jit

exp(ωjit)

) 1
φ((

F ( ~Xit)
) 1
φ −

∑
k∈Yrit

(
Y kit

exp(ωkit)

) 1
φ

) . (58)

Sum (58) over all k ∈ Yr
it, yielding:

∑
k∈Yrit

(
µk∗it exp(ωkit)

) 1
1−φ = (exp(ωrit))

1
1−φ

∑
k∈Yrit

(
Y kit

exp(ωjit)

) 1
φ((

F ( ~Xit)
) 1
φ −

∑
k∈Yrit

(
Y kit

exp(ωkit)

) 1
φ

) . (59)

Adding (exp(ωrit))
1

1−φ to both sides of (59) yields:

(exp(ωrit))
1

1−φ +
∑
k∈Yrit

(
µk∗it exp(ωkit)

) 1
1−φ = (exp(ωrit))

1
1−φ

(
F ( ~Xit)

) 1
φ((

F ( ~Xit)
) 1
φ −

∑
k∈Yrit

(
Y kit

exp(ωkit)

) 1
φ

) . (60)

Dividing (58) by (60) yields:

(
µj∗it exp(ωjit)

) 1
1−φ

(exp(ωrit))
1

1−φ +
∑

k∈Yrit

(
µk∗it exp(ωkit)

) 1
1−φ

=

(
Y j
it

exp(ωjit)F ( ~Xit)

) 1
φ

. (61)
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Since
(µj∗it exp(ωjit))

1
1−φ

(exp(ωrit))
1

1−φ+
∑
k∈Yr

it
(µk∗it exp(ωkit))

1
1−φ

= Sj∗it , we can substitute (61) into (57), yielding:

P j
(
~Sit, ~µit

)
= Y j

it − exp(ωjit)

( Y j
it

exp(ωjit)F ( ~Xit)

) 1
φ

φ

F
(
~Xit

)
= Y j

it − Y
j
it = 0.

Hence, FOCjX
it

(
~S∗it, ~µ

∗
it

)
= P k

(
~S∗it, ~µ

∗
it

)
= 0 ∀j ∈ Yr

it and ∀X ∈ (K,M), which means ~S∗it and ~µ∗it

satisfy the first-order necessary conditions for (TF). Moreover, since F is quasi-concave, the first-order

necessary conditions are sufficient. Therefore ~S∗it and ~µ∗it are a solution to (TF). The proposition follows

by noting ~S∗it satisfies SjXit = Sjit ∀X ∈ (K,M) by construction, and the shares implied by (TF) will

also solve (CM) when evaluated at the level of static inputs implied by (CM2).

8.2 Appendix B: Data Appendix

8.2.1 Appendix B1: Sample Selection and Industry Details

The core sample used in this paper is all firms producing products belonging to the two-digit ASICC

codes 74-78, which I refer to as the Machinery, Equipment and Parts industry.112 Details on these

product codes are described in Table 21, below. This choice of codes was in part driven by observed

similarities (see Table 21), as well as data driven. In particular, while I regard ASICC 77: ELECTRICAL

& ELECTRONIC MACHINERY & EQUIPMENT INCL PARTS as the “core” industry, note that 45 %

of the multi-product observations for ASICC 77 are produced by plants that produce products belonging

to multiple 2-digit AISICC codes. Since focussing only of ASICC 77 firms would require that I drop

close to half of the multi-product observations, I also add ASICC codes 74, 75, 76, and 78 to the

sample, because they are relatively similar categories, and together account for more than 80 % of the

multi-product variety-year observations for firms producing products belonging to ASICC 77.

As discussed in the main text, this industry was also chosen in large part because vertical integration

is a smaller problem than in other industries. In particular, as described in Table 22, below, the

Machinery, Equipment, and Parts industry has a relatively low level of vertical integration.

To determine firms which may be vertically integrated, I construct an input-output table, using

information on inputs purchased by single product firms. For each output 5-digit ASICC code j, I

collect the set of 5-digit ASICC codes k that are listed as inputs for single-product firms that produce j.

I consider a multi-product firm potentially vertically integrated if they produce a pair of outputs, j and

k, where at least 10 % of single-product producers of j also buy input k. While the 10% threshold is

somewhat arbitrary, note more restrictive rules may result in many non-vertically integrated firms being

classified as vertically integrated. For example, if one instead considers a firm potentially vertically

integrated if any producer of j is observed using k, then more than 75 % of multi-product firms in

the ASI, i.e. including all industries, are considered vertically integrated. Since it seems, at face value,

112Two digit ASICC codes from the 2009 version of the ASICC codes, which I match to the observed 2000-2008 ASICC
codes in my data.
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implausible that this many firms are actually producing multiple outputs for vertical integration reasons,

I restrict attention to input-output pairs that are somewhat common, to remove the influence of outlier

(rare) production sets. The 10% threshold results in just over 40% of all ASI multiproduct firms being

classified as potentially vertically integrated. While this approach still classifies a fairly large percentage

of multi-product firms as potentially vertically integrated, note that more lenient thresholds (e.g 20%)

resulted in some obvious examples of vertical integration (e.g. batteries and battery plates) not being

classified as vertically integrated.

As discussed in the main text, unless otherwise stated, I drop potentially vertically integrated plants

in any regressions requiring information on the allocation of inputs across production lines, since these

are unlikely to be measured correctly. I do, however, include these firms in the demand estimation

regressions, since input shares do not need to be known for their prices do be information. Similarly,

while I include multi-industry firms in the demand regressions, since they can aid in identification, I only

consider single industry firms in all subsequent regressions, i.e. firms who only produce products from

ASICC codes 74-78, since these regressions generally require estimates of within-firm input allocations,

which I cannot know without knowledge of the production function used in other industries. These

regressions also do not include plants with ad-valorem tax rates below 0 or above 1, as they are likely

plagued by data entry errors. Similarly, all regressions drop plants with negative or missing prices and

quantities, who do not record any values for any of the inputs used in production function estimation,

who did not operate for 12 months, and whose entries appeared to have some major data entry errors,

including a small number of firms who listed their initial production year as being past the end of the

sample period, reported input quantity codes that did not equal the standard quantity code for the

given ASICC code, as well some firms who had entries for a particular firm-type that was not included

in any of the ASI code books.
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8.2.2 Appendix B2: 3-digit ASICC codes

3-digit ASICC codes

ASICC code Description

740 MISC. MANUFACTURE OF BASE METALS, N.E.C

751
NON-ELECTRICAL MACHINE TOOLS & GENERAL PURPOSE MACHINERIES AND

COMPONENTS AND PARTS THEREOF

761 AGRICULTURAL & FORESTRY MACHINERIES/PARTS THEREOF

762 FOOD, BEVERAGES & TOBACCO PROCESSING MACHINERIES & PARTS

763 MININGS, QUARRYING & METALLURGICAL MACHINERIES/PARTS

764 CONSTRUCTION/CEMENT MACHINERIES & PARTS

765
TEXTILE, LEATHER & RUBBER PROCESSING, PAPER PRINTING MACHINERIES

& PARTS THEREOF

766 NON-ELECTRICAL DOMESTIC/OFFICE APPLIANCES & PARTS

767 CHEMICAL/PLASTIC/GLASS/WEAPON/AMMUNITION MACHINERIES AND PARTS THEREOF

768 LIFT AND LIFTING EQUIPMENT, FIXED OR MOBILE & PARTS THEREOF

769 MISC NON-ELECTRICAL MACHINERIES AND PARTS THEREOF, N.E.C

771 ELECTRICAL MACHINERY/EQUIPMENT

772
ELECTRICAL MOTORS, GENERATORS, TRANSFORMER, POWER PACK [THIS INCL PUMP

SET FITTED WITH ELECTRIC MOTOR]

773
SWITCH, SWITCH-GEAR, CONTROL PANEL, CIRCUIT BREAKERS ETC AND PARTS

THEREOF

774 LAMP, FILAMENT, ELECTRODES/ANODES/CONNECTORS, FITTINGS & PARTS

775 MEASURING/CONTROLLING/REGULATING INSTRUMENTS

776 BATTERY, ACCUMULATORS, CELLS AND PARTS THEREOF

777 DOMESTIC AND OFFICE ELECTRICAL EQUIPMENT

778 ELECTRO MAGNET, FANS, ARMATURE, COILS & ELECTRO-MAGNETIC EQUIPMENT

779 ELECTRICAL EQUIPMENT, PARTS AND ACCESSORIES, N.E.C

781 TELEPHONE/TELECOMMUNICATION/TRANSMISSION EQUIPMENT

782 AUDIO/VIDEO/SOUND APPARATUS & PARTS

783 COMPUTER & COMPUTING EQUIPMENT & PERIPHERALS & PARTS

784 ELECTRONIC VALVES/TUBES & COMPONENTS

785
ELECTRONIC CARDS & ITS

COMPONENTS

789 OTHER ELECTRONIC COMPONENTS & PARTS

Notes: All 3-digit ASICC codes at the from 2009 ASICC. I map three digit ASICC codes to 5-digit ASICC codes from 2001-2008 using a
custom made concordance that matches product descriptions at the 5-digit level.

8.2.3 Appendix B3: Trade Data Appendix

As described in the main text, I use data on imports and tariffs from UN Comtrade and TRAINS

at the 4-digit HS-96 level to construct estimates of imports and tariffs for each 5-digit ASICC code. To

generate the concordance between 5-digit ASICC codes, I first create a concordance between the observed
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ASICC codes from 2001 to 2008, to the 2009 5-digit ASICC codes.113 I then match 5-digit ASICC codes

to the 7-digit 2011 National Product Classification for Manufacturing Sector (NPCMS) codes using a

concordance created by the Indian Ministry of Statistics.114 Since the first five digits of NPCMS-2011

are equivalent to the international Central Product Classification 2.0 (CPC2), I then match 5-digit

NPCMS-2011/CPC2 codes to 4-digit HS-2007 codes using a United Nations Statistics Division created

concordance.115 Finally, I match 4-digit HS-2007 to 4-digit HS-96 using the concordance which can be

found at https://unstats.un.org/unsd/trade/classifications/correspondence-tables.asp.

This process generates a crosswalk between 5-digit ASICC codes and 4-digit HS-96 codes.116 Note,

however, that many HS codes map to multiple ASICC codes. This does not generate any real difficulties

for calculating tariff levels across products, as I can simply use the average tariff rate across all matching

HS codes to obtain a estimate of the average rate of protection. However, for imports this can generate

problems due to double counting imports across items. To deal with this, I allocate imports from each

HS-96 code that links to multiple ASI codes proportionally to the overall value of observed materials

imports in the ASI production data. Specifically, since each plant records the value of imported inputs

for up to five 5-digit ASICC codes each year, I take the total observed value of imports for each ASICC

code g, IgASICC , and allocate observed imports from HS code h, IhHSt, to ASICC code g according the

formula Importsgt =
IgASICC∑

l∈Hh I
l
ASICC

IhHSt, where Importsgt is value of imports for product code g during time

t that I use in my empirical model, and Hh is the set of 5-digit ASICC codes that map to HS code h.

8.3 Appendix C: Demand Appendix

8.3.1 Appendix C1: Derivation of Demand System from Underlying Preferences

The formulation of consumer preferences follows the “constant expenditure share” formulation of

the discrete choice demand system described in of Björnerstedt and Verboven (2013).117 During each

market-period t, a mass St of consumers decide whether they wish to buy a single item j ∈ Λg
t ⊂ Ωt.

Conditional on choosing to consume j, utility of consumer c is given by:

Uct(j,Q
j
cit, ε

jg
cit) =

(
Qjg
cit exp

(
ηjgit + εjgcit

α

))βI

(Qc0)1−βI , (62)

where Qjg
cit is the quantity of good j ∈ Λg

t , which is produced by firm i, currently bought by consumer

c, Qc0 is the quantity of some composite outside good purchased by consumer c, while ηjgit is the mean

113I create this concordance by matching on the given item-code descriptions between ASICC 2001-2008 and 20009,
which results in a match for the vast majority of the codes.

114This can be found at http://www.csoisw.gov.in/cms/En/1027-npcms-national-product-classification-for-
manufacturing-sector.aspx

115This can be found at which can be found at https://unstats.un.org/unsd/cr/registry/cpc-2.asp.
116A small number of ASICC codes (13) could not be matched to trade data. These account for less than one percent

of the overall sample, and are thus dropped, as I cannot guarantee to be measuring market size correctly for these
observations.

117While Björnerstedt and Verboven (2013) work with the indirect utility function directly, one can start from the utility
function as a do here, similar to Anderson et al. (1987).
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quality of good j ∈ Λg
t , ε

jg
cit is an idiosyncratic taste shock for product j, and α > 0 and βI ∈ (0, 1) are

preference parameters.

I assume that conditional on j, consumers choose Qj
ct and Qc0 to maximize their utility, given the

unit price of good j, P j
t , and the price of the composite composite commodity, which I normalize

to 1, subject to some exogenous income level Yct.
118. Since (62) is a standard Cobb-Douglas utility

function, this leads to equilibrium conditional consumer demands Qj∗g
ct = βI

Yct
P jgit

and Q∗c0 = (1− βI)Yct.
Substituting these expressions into (62) yields the conditional indirect utility function:

Vct(j, ε
jg
cit, Yct) = CctYct

(
exp

(
βI
α
ηjgit − βIp

jg
it +

βI
α
εjgcit

))
, (63)

where Cct ≡ (βI)
βI (1− βI)1−βI is an arbitrary constant, and pjt ≡ ln(P j

t ).

Given the conditional indirect utility function (63), consumers will choose the j ∈ Ωt that provides

the largest indirect utility. Note, however, that it will prove useful to rescale the indirect utility function

by first taking it’s natural log, and then multiplying by α
βI

, yielding:

Ṽct(j, ε
jg
cit, Yct) = c̃ct +

α

βI
yct − αpjt + ηjt + εjct, (64)

where yct ≡ ln(Yct), and c̃ct is an arbitrary constant.

Since positive monotonic transformations of (63) will not affect the ordinal ranking of the products

in Ωt, the consumers problem can instead be formulated as choosing the j ∈ Ωt that maximizes the

transformed indirect utility function (64). As is standard in discrete choice models of demand, following

McFadden (1978), instead of solving this problem on a consumer by consumer basis, one models the

distribution of consumer taste shocks, εjgcit, so that one may determine the probability that each product

j ∈ Ωt is chosen by a randomly chosen consumer within the general population. In particular, I assume

the vector of idiosyncratic taste terms for each consumer c, ~εct =
(
ε1gct , ε

2g
ct , .., ε

1l
ct, ε

2l
ct, ...

)
, can be modeled

as an i.i.d. draw from a generalized extreme-value distribution with cdf:

F (~εct) = exp

− G∑
g=0

∑
j∈Λgt

exp

(
−ε

jg
cit

σ

)σ , (65)

where G is the number of product groups (i.e. 5-digit product codes) on the market.

Note that σ governs the within-product code correlation of the idiosyncratic taste terms. In the

special case where σ = 1, (65), there is no correlation of the idiosyncratic taste shocks within a product

group, and (65) simplifies to a standard Type-1 extreme value distribution. However, as σ decreases,

the correlation between the taste shocks within a product group increases-see Train (2009).

118 Since in my empirical application, “consumers” of Machinery, Equipment, and Parts, are perhaps more appropriately
thought of as downstream producers, I can adapt this framework to such a setting by regarding (62) as a Cobb-Douglas
materials aggregator function used by a particular downstream producer c. In this case, producers choose quantities
to maximize effective materials per rupee spent, which is an implication of cost-minimization. While the portion of
expenditure allocated to material expenditures, Yct, is endogenous in the downstream firms overall profit maximization
problem, note that as long as upstream producers take the downstream output-pricing game as given, total expenditure
on materials, Yct is pinned down by downstream output prices and markups, as I discuss in footnote 120, below.

82



It is well known that if each ~εct is an i.i.d. draw from (65), then, given the indirect utility function

described by (64), the probability a randomly chosen consumer chooses to consume item j ∈ Λg
t has the

following closed-form expression:

Probjgit =
exp

(
δjgit
σ

)(∑
k∈Λgt

exp
(
δkgit
σ

))σ−1

∑G
l=0

(∑
k∈Λlt

exp
(
δklit
σ

))σ , (66)

where δjgit ≡ ηjgit − αp
jg
it is the mean utility for choosing to consume variety j ∈ Λg

t .

Since there are a continuum of consumers within the market, each of whom, with probability Probjgit ,

purchases Qjg∗
cit = βI

Yct
P jgit

units of item j, the total aggregate demand for product j ∈ Λg
t , produced by

firm i, is given by:

Qjg
it =

Et

P jg
it

exp
(
δjgit
σ

)(∑
k∈Λgt

exp
(
δkgmt
σ

))σ−1

∑G
l=0

(∑
k∈Λlt

exp
(
δklmt
σ

))σ , (67)

where Et = E (Yct) is expected expenditure by all consumers on the items within this market.

Note that in the special case where σ = 1 , (67) simplifies to Qjg
it =

Et exp(ηjit)(P
jg
it )
−(1+α)∑G

l=1

∑
k∈Λlt

exp(ηklmt)(Pklmt)
−α , which

is a quality-adjusted variation of the CES demand system that is commonly used in the international

trade literature. While this specification of the demand function is often used in applied work for it’s

simplicity, note that setting σ = 1 results in conditional choice probabilities that satisfy the independence

of irrelevant alternatives (IIA) property, which means that following an increase in the price of any item

j, choice probabilities for all varieties k 6= j will increase by the exact same proportion.119 Given the

Cobb-Douglas form of the consumer-level conditional demand function, this also implies a proportionate

increase in overall demand for all items k 6= j. While these substitution patterns may be appropriate

for sufficiently similar products, note that most firms produce products that belong to multiple product

classes, such as, for example, rubber insulated cables (ASICC 77475) and PVC insulated Cables (ASICC

77471) . As a result, to use this simplified demand system, one must be willing to assume that cross-

price elasticities between these two types of cables are the same as the cross-price elasticities between

different varieties of a particular class of cable, which is unlikely to hold in practice.

To get around the unrealistic cross-price elasticities generated by the IIA property, one introduces

correlation in the individual-level tastes shocks by allowing σ ∈ (0, 1). As long as taste shocks are

correlated within product groups, this means that, in the aggregate, some consumers generally prefer

rubber cables to PVC cables, and vice-versa. This then leads to cross-price elasticities that are larger

within product groups than across product groups, since a change in the price of a particular variety of

PVC cable will primarily lead to product substitution by the consumers who prefer PVC cables, rather

than rubber cables.

119To see this, note that relative choice probabilities,
Probjt
Probkt

, only depend on the relative payoffs between the two items,

rather than all items in the consumers choice set, as
Probjt
Probkt

= exp
(
δjt − δkt

)
.
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8.3.2 Appendix C2: Input Share Inversion Details

To obtain the mapping between demand-side observables and marginal costs for the demand system

used in the main text, I need the demand derivatives for (26). These derivatives are given by:120

∂Qjg
it

∂P jg
it

= −Q
jg
it

P jg
it

(
1 +

α

σ
− (1− σ)αRS

j|g
it

σ
− αRSjgit

)
if j ∈ Λg

t , (68)

∂Qjg
it

∂P kl
it

=


Qjgit
Pkgit

(
(1−σ)αRS

k|g
it

σ
+ αRSkgit

)
if (j, k) ∈ Λg

t

Qjgit
Pklit
αRSklit if j ∈ Λgt, k ∈ Λl

t, l 6= g,
(69)

where RSjgit ≡
P jgit Q

jg
it

Eht
is the overall revenue market share of product j ∈ Λg

t ⊂ Ωh
t , while RS

j|g
it ≡

P jgit Q
jg
it∑

k∈Λ
g
t
Pkgit Q

kg
it

is the within-nest revenue share of product j.

I then use these demand derivatives, combined with the firm’s pricing first-order conditions, to find

the marginal cost inversion necessary to obtain the within-firm input allocations. Note, however, that

to account for product specific taxes, which I observe in my data, I need to make a small adjustment

to the baseline model discussed in the main text. Let τ jit denote the ad-valorem tax rate on product

j ∈ Yit, which I assume takes the form of sales tax that consumers must pay on top of the listed price.

The per-unit price that consumers must pay for some good j overall is then P jC
it = P j

it(1 + τ jit), where

P j
it is the price set (and received) at the plant level. Since P jC

it 6= P j
it, the firm’s first order pricing

conditions become:

Qj
it + (1 + τ jit)

∑
k∈Yit

∂Qk
it

∂P jC
it

(
P k
it −MCk

it

)
= 0, (70)

where the (1 + τ jit) in (70) reflects the fact that
∂Qkit
∂P jit

=
∂Qkit
∂P jCit

∂P jCit
∂P jit

=
∂Qkit
∂P jCit

(1 + τ jit).

Stacking the above in vector notation:

~̃
Qit + ∆it

(
~Pit − ~MCit

)
= 0, (71)

120 Note that if we interpret consumers as downstream purchases of aggregate materials, as described in footnote 118,
then these demand derivatives assume that Machinery, Equipment, and Parts producers take downstream expenditure
levels on materials as exogenous. This can be justified by treating the downstream output market equilibrium as given. In
particular, suppose that downstream production is done using a (potentially unknown) Cobb Douglas production function,
with (63) corresponding to the Cobb-Douglas materials aggregator for some downstream firm c. Further suppose that
downstream firms also compete in the manner described by (4) in the main text. Then one can use the cost-minizing

condition for materials, (6), to show that WM
ct M

jD
ct = βDM

P jDct Q
jD
ct

µjDct
, where βDM is the Cobb-Douglas materials coefficient for

downstream firms, P jDct Q
jD
ct is total revenue earned by some downstream firm c in product line j, µjDct is the markup they

charge on this product line, i.e.
(

P jDct
MCjDct

)
, and WM

ct M
jD
ct is total expenditure on aggregate materials for product line j in

the downstream firm c. Note that total income spent on materials is pinned down by the prices, quantities, and markups
charged by the downstream firms in the output market. Hence, as long as upstream firms in the Machinery, Equipment,
and Parts industry take the downstream output market equilibirum as given, then each individual producer’s “income”,
i.e. WM

ct M
jD
ct , is exogenously given from their point of view.
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where ~Pit, and ~MCit are column vectors of prices and marginal costs,
~̃
Qit is the vector of quantity sold

over 1 + τ jit, i.e.
Qjit

1+τ jit
, and ∆it is a square matrix of own and cross-price demand derivatives for all the

Jit = |Yit| products produced by firm i, i.e.:

∆it =



∂Q
i1
it

∂P
i1
it

∂Q
i2
it

∂P
i1
it

...
∂Q

iJit
it

∂P
i1
it

∂Q
i1
it

∂P
i2
it

∂Q
i2
it

∂P
i2
it

...
∂Q

iJit
it

∂P
i2
it

... ... ... ...

∂Q
i1
it

∂P
iJit
it

∂Q
i2
it

∂P
iJit
it

...
∂Q

iJit
it

∂P
iJit
it


, (72)

where ij is the jth element of Yit.

Since (26) satisfies Assumption 7, and therefore ∆it is invertible, (71) can be rewritten as:

~MCit = (∆it)
−1 ~̃Qit + ~Pit = g

(
~Pit,

~̃
Qit, ~RSit, ~RS

g

it, α, σ

)
, (73)

where the second equality follows from (68) and (69). Hence, using (73), one can rewrite (9) as:

Xj
it =

gjit

(
~Pit,

~̃
Qit, ~RSit, ~RS

g

it, α, σ

)
Y j
it∑

k∈Yit g
k
it

(
~Pit,

~̃
Qit, ~RSit, ~RS

g

it, α, σ

)
Y k
it

Xit, (74)

where the equilibrium value of each gjit function can be determined from (73), given (α, σ).

8.4 Appendix D: Revenue TFP

In this section I show how one can use the structure of the production function and demand function

to generate a rescaled production function whose residual is a combination of productivity and demand

shifters, following Klette and Griliches (1996) and De Loecker (2011).

Let exp
(
η̃jgit
)
≡

 Eht exp

(
η
jg
it
σ

)
(∑

k∈Λ
g
t

exp

(
δ
kg
mt
σ

))1−σ∑
l∈Ωht

(∑
k∈Λlt

exp

(
δklmt
σ

))σ


1
1+α

σ

, and substitute this expression

into (26), yielding Qjg
it = exp(η̃jgit )

(
P jg
it

)−(1+α
σ )

. One can then use this expression to write product-level

revenues as:

Rjg
it = exp

(
η̃jgit
) (
Qjg
it

)− α
σ

1+α
σ . (75)

Substituting Qjg
it = Y j

it = exp
(
ωjgit
) (
Ljgit
)βL (

Kjg
it

)βK (
M jg

it

)βM
into (75), taking logs and rearranging

yields:121

121Note that this formula does not take into accounts changes in inventories, although can be adapted to account for
this.
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Rjg
it(

Ljgit
)β̃L (

Kjg
it

)β̃K (
M jg

it

)β̃M = exp

(
η̃jgit +

α
σ
ωjgit

1 + α
σ

)
≡ TFPRjg

it , (76)

where β̃X ≡
α
σ

1+α
σ
βX for X ∈ (L,K,M). Note that TFPRjg

it varies across products due to both pro-

ductivity variation, ω̃jgit ≡
α
σ
ωjgit

1+α
σ

, as well demand variation, η̃jgit , which is driven by differences in quality,

average product-appeal at the 5-digit ASICC code, as well as product-space congestion effects.122

Note, however, that TFPR variation within a 5-digit product code and year is simply a weighted

sum of the quality and TFPQ residuals from (28) and (31), respectively. To see this, take logs and

demean (76) by product-code and year, yielding:

ln
(
TFPRjg

it

)
− ln

(
TFPR

g

t

)
=

1

σ + α

(
ηjgit − η

g
t

)
+

α
σ

1 + α
σ

(
ωjgit − ω

g
t

)
− 1

1 + α
σ

RCg
t , (77)

where RCg
t ≡ ln

(
Eh
t

)
− (1 − σ) ln

(∑
k∈Λgt

exp
(
δkgit
σ

))
− ln

(∑G
l=1

(∑
k∈Λlt

exp
(
δkgit
σ

))σ)
, while ηgt and

ωgt are the average values of quality and TFPQ, respectively, within a product code-year.

122Note that the demand shifter η̃jgit also incorporates product-space congestion effects, since increases in(∑
k∈Λgt

exp
(
δkgit
σ

))1−σ
and

∑
l∈Ωht

(∑
k∈Λlt

exp
(
δkgit
σ

))σ
, caused by an increase in the number of competitors at the

5-digit and 3-digit ASICC code, respectively, will scale down η̃jit.
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8.5 Appendix E: Results with Materials Measured in Value Units

Figure 7: Negative Correlation between TFPQ and Quality: Materials in Value Units

Notes: Standard errors of slopes, adjusted for two-way clustering by plant and product code, reported in parentheses. Quality
refers to the year-product code demeaned residual from (28), while TFPQ refers to the year-product code demeaned residual
from (31), with materials measured in value, rather than quantity, units. Panel (1) includes all products, Panel (2) only
includes single-product plants, and Panels (3) and (4) only includes products produced by multi-product plants. Panel (4)
plots within-firm demeaned values of TFPQ and quality.
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Table 23: Tariffs And Within-Firm Efficiency

(1) (2) (3)

Quality Relative TFPQ Relative TFPR

Specialization Specialization Specialization

Tariffsit -0.0141* 0.0161** 0.00199

(0.00768) (0.00762) (0.00478)

Observations 1,745 1,745 1,745

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an OLS regression of the listed outcome variable on firm-level
average tariffs as described in the main text. All regressions include year, plant, number of product

code and number of variety fixed effects. Quality Specialization measured by OPit

(
~Sit,

~
η̃
j|g
it

)
,

while Relative TFPQ Specialization measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). High TFPR

efficiency measured by OPit

(
~Sit,

~
h
j|g
it

)
. Tariffsit measured as firm-level average of tariffs applied

to each product-code produced within a plant. TFPQ calculated by measuring materials in revenue
units. Standard errors treat demand and production function estimates as data.

Table 24: Import Competition And Within-Firm Efficiency (OLS)

(1) (2) (3)

High Quality Relative TFPQ High RTFP

Specialization Specialization Specialization

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0105 -0.0163* -0.00583

(0.00816) (0.00766) (0.00751)

Observations 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an OLS regression of the listed outcome variable on firm-level import
competition as described in the main text.All regressions include year, plant, number of product code and

number of variety fixed effects. Quality Specialization measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ

Specialization measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR specialization measured

by OPit

(
~Sit,

~
h
j|g
it

)
. TFPQ calculated by measuring materials in revenue units. Standard errors treat

demand and production function estimates as data.
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Table 25: Import Competition And Within-Firm Efficiency (First Stage and IV)

(1) (2) (3) (4)

High Quality Relative TFPQ Relative TFPR

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
Specialization Specialization Specialization

ZChina
it 0.767***

(0.103)

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0890** -0.104*** -0.0147

(0.0398) (0.0386) (0.0226)

Observations 1,710 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Column (1) reports the first stage regression for the instrumental variables regressions discussed in the main text. AP F-statistic
for excluded instrument equals 55.31. Columns (2) through (6) correspond to an instrumental variables regression om the listed outcome

variable, where ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined by equation (44). All regressions include year, plant,

number of product code and number of variety fixed effects. Quality Specialization measured by OPit

(
~Sit,

~
η̃
j|g
it

)
, while Relative TFPQ

Specialization measured by OPit

(
~Sit,

~
ω̃
j|g
it

)
- see equation (41). Relative TFPR efficiency measured by OPit

(
~Sit,

~
h
j|g
it

)
. TFPQ

calculated by measuring materials in revenue units. Standard errors treat demand and production function estimates as data.

8.6 Appendix F: Robustness - Net Impact of Chinese Import Competition

on Plant Performance
Table 26: Decomposing Impact of Chinese Imports of Firm Performance: Endogenous TFPQ

(1) (2) (3) (4) (5)

Product Code TFPR Average Total Standard Plant

Specialization Specialization Performance Performance TFPR

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.0407* 0.0148 -0.105 -0.0900 -0.103*

(0.0220) (0.0155) (0.0875) (0.0809) (0.0576)

Observations 1,710 1,710 1,710 1,710 1,710

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01
Notes: Each column corresponds to an instrumental variables regression on the listed outcome variable, where

ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ZCHN

it , defined by equation (44). All regressions include year, plant, number of

product code and number of variety fixed effects. Product code specialization is measured by OPit

(
~Sit,

~hgt

)
= OPit

(
~Sit,

~̃ωgt

)
+

OPit

(
~Sit,

~̃ηgt

)
, while total specialization is measured by OPit

(
~Sit, ~hit

)
= OPit

(
~Sit,

~
η̃
j|g
it

)
+OPit

(
~Sit,

~
η̃
j|g
it

)
+OPit

(
~Sit,

~hgt

)
. Aver-

age TFPR is the plant-level unweighted average of variety-level TFPR, hit, while total TFPR is given by hit = hit + OPit

(
~Sit,~hit

)
.

Standard Plant TFPR is measured as ln
(∑

j∈Yit P
j
itQ

j
it

)
−

α
σ

1+α
σ

(βLlit + βKkit + βMmit). Standard errors treat demand and produc-

tion function estimates as data.

In Table 26, I estimate the same decomposition of the various dimensions of plant-level productivity

growth following Chinese import shocks as described in Table 11, after re-estimating the production
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function parameters using the endogenous productivity specification described in Section 6.3.3.

8.7 Appendix G: OP Covariance Decompositions

For notational convenience, first note that:

OPit

(
~Sit, ~xit

)
=
∑
j∈Yit

(
xjgit −

1

Jit

∑
j∈Yit

xjgit

)(
Sjgit −

1

Jit

∑
j∈Yit

Sjgit

)

=
∑
j∈Yit

(
xjgit −

1

Jit

∑
j∈Yit

xjgit

)
︸ ︷︷ ︸

≡x̂jgit

Sjgit −
1

Jit

∑
j∈Yit

(
xjgit −

1

Jit

∑
j∈Yit

xjgit

)
︸ ︷︷ ︸

=0

=
∑
j∈Yit

Sjgit x̂
jg
it .

(78)

Next, partition the set of products produced at time t and t−1 into three non overlapping categories:

1) Dropped products, denoted by Dit ⊂ Yi,t−1, and corresponding to the set of products that were

produced in t − 1 but dropped at time t, 2) New products, denoted by Nit ⊂ Yit, and corresponding

to the set products that were produced at time t but not produced at time t − 1, and 3) Constant

products, denoted by Cit, and corresponding to the set of products that were produced in both t − 1

and t. Further define the within-category X ∈ (N,D,C) share as S
jg|X
it ≡ Sjgit

SXit
, where SXit denotes the

total input share of products belonging to category X ∈ (N,D,C) at time t. Note that by construction

SDi,t−1 + SCi,t−1 = 1 and SNit + SCit = 1. One can then write:

OPi,t−1

(
~Si,t−1, ~xi,t−1

)
= SCi,t−1

∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1 + SDi,t−1

∑
j∈Dit

S
jg|C
i,t−1 x̂

jg
i,t−1, (79)

and:

OPit

(
~Sit, ~xit

)
= SCit

∑
j∈Cit

S
jg|C
it x̂jgit + SNit

∑
j∈Nit

S
jg|N
it x̂jgit

= SCi,t−1

∑
j∈Cit

S
jg|C
it x̂jgit + ∆SCit

∑
j∈Cit

S
jg|C
it x̂jgit + SNit

∑
j∈Nit

S
jg|N
it x̂jgit

= SCi,t−1

∑
j∈Cit

S
jg|C
it x̂jgit + SDi,t−1

∑
j∈Cit

S
jg|C
it x̂jgit + SNit

(∑
j∈Nit

S
jg|N
it x̂jgit −

∑
j∈Cit

S
jg|C
it x̂jgit

)
,

(80)

where ∆SCit ≡ SCit − SCi,t−1 = SDi,t−1 − SNit .

First differencing (80) and (79) yields:
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∆OPit

(
~Sit, ~xit

)
= SCi,t−1

(∑
j∈Cit

S
jg|C
it x̂jgit −

∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1

)

+ SDi,t−1

(∑
j∈Dit

S
jg|C
it x̂jgit −

∑
j∈Dit

S
jg|D
i,t−1 x̂

jg
i,t−1

)

+ SNit

(∑
j∈Nit

S
jg|N
it x̂jgit −

∑
j∈Cit

S
jg|C
it x̂jgit

)
.

(81)

Adding and subtracting SDi,t−1

(∑
j∈Cit S

jg|C
it x̂jgit −

∑
j∈Cit S

jg|C
i,t−1 x̂

jg
i,t−1

)
from (81) then yields, after

cancelling out like terms:

∆OPit

(
~Sit, ~xit

)
=
∑
j∈Cit

S
jg|C
it x̂jgit −

∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1

+ SDit

(∑
j∈Cit

S
jg|C
i,t−1 x̂

jg
i,t−1 −

∑
j∈Dit

S
jg|D
i,t−1 x̂

jg
i,t−1

)

+ SNit

(∑
j∈Nit

S
jg|N
it x̂jgit −

∑
j∈Cit

S
jg|C
it x̂jgit

)
,

which corresponds to (49) in the main text.

Appendix G1: Constant Chinese Import Competition Production Sets

Table 27: Plant-Level Changes in Quality Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.203 -0.396 0.759 -0.160

(0.583) (0.725) (1.174) (0.593)

∆ ln
(∑

g∈ΛCDit
IMg

IND,CHN,t

)
-0.0144 0.0425 -0.0656 0.00868

(0.0441) (0.0421) (0.0534) (0.0470)

Observations 989 989 989 989 985 985 985 985

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome,

where ∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
or ∆ ln

(∑
g∈ΛCDit

IMg
China,t

)
is instrumented by ∆ZChinaCD

it =

∆ ln
(∑

g∈ΛDCit

∑
k∈CNo India IMg

k,CHN,t

)
, where ∆ is the time differencing operator, and ΛCDit is the set of product

codes belonging to the dropped and constant product sets, Dit and Cit. All regressions include current and lagged (according
to plant time) fixed effects for the number of product codes, number of varieties, and calendar year. AP F-statistic for excluded
instrument equals 0.55 for columns (1) through (4) and 26.80 for columns (5) through (8). Total Specialization refers to

∆OPit

(
~Sit,

~
η̃
j|g
it

)
, while Intensive Margin, Product Dropping, and New Product refer to terms (I), (D) and (N) in equation

(49), respectively, with xjgit = η̃
j|g
it . Standard errors treat demand and production function estimates as data.
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Table 28: Plant-Level Changes in Relative TFPQ Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.310 0.0521 -0.685 0.323

(0.715) (0.533) (1.071) (0.741)

∆ ln
(∑

g∈ΛCDit
IMg

IND,CHN,t

)
0.0294 -0.0131 0.0675 -0.0250

(0.0518) (0.0446) (0.0505) (0.0505)

Observations 989 989 989 989 985 985 985 985

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome,

where ∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
or ∆ ln

(∑
g∈ΛCDit

IMg
IND,CHN,t

)
is instrumented by ∆ZChinaCD

it =

∆ ln
(∑

g∈ΛDCit

∑
k∈CNo India IMg

k,CHN,t

)
, where ∆ is the time differencing operator, and ΛCDit is the set of product

codes belonging to the dropped and constant product sets, Dit and Cit. All regressions include current and lagged (according
to plant time) fixed effects for the number of product codes, number of varieties, and calendar year. AP F-statistic for excluded
instrument equals 0.55 for columns (1) through (4) and 26.80 for columns (5) through (8). Total Specialization refers to

∆OPit

(
~Sit,

~
ω̃
j|g
it

)
, while Intensive Margin, Product Dropping, and New Product refer to terms (I), (D) and (N) in equation

(49), respectively, with xjgit = ω̃
j|g
it . Standard errors treat demand and production function estimates as data.

8.7.1 Appendix G2: First-Difference Robustness

Table 29: Plant-Level Changes in Quality Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
0.176** 0.0256 0.122* 0.0287

(0.0691) (0.0519) (0.0643) (0.0443)

∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
0.162** 0.0437 0.141** -0.0230

(0.0674) (0.0498) (0.0597) (0.0524)

Observations 667 667 667 667 667 667 667 667

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome, where

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ∆ZCHN

it , defined by equation (44), and ∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
is instrumented by ∆ZAltCHN

it = ∆ 1
Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,CHN,t

)
, where ∆ is the time differencing operator ac-

cording to calendar year. All regressions include year fixed effects. AP F-statistic for excluded instrument equals 24.76 for

columns (1) through (4) and equals 27.43 for columns (5) through (8). Total Specialization refers to ∆OPit

(
~Sit,

~
η̃
j|g
it

)
, while

Intensive Margin, Product Dropping, and New Product refer to terms (I), (D) and (N) in equation (49), respectively, with

xjgit = η̃
j|g
it . Standard errors treat demand and production function estimates as data.
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Table 30: Plant-Level Changes in Relative TFPQ Specialization: Intensive versus Extensive Margin

(1) (2) (3) (4) (5) (6) (7) (8)

Total Intensive Product New Total Intensive Product New

Specialization Margin Dropping Products Specialization Margin Dropping Products

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
-0.171*** -0.0210 -0.0971** -0.0528

(0.0642) (0.0419) (0.0487) (0.0478)

∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
-0.137** -0.0454 -0.0944** 0.00256

(0.0649) (0.0401) (0.0434) (0.0517)

Observations 667 667 667 667 667 667 667 667

Standard errors clustered by plant

*p<0.1; **p<0.05; ***p<0.01

Notes: Each column corresponds to an instrumental variables regression on the described outcome, where

∆ ln
(

1
Git

∑
g∈Λit

IMg
IND,CHN,t

)
is instrumented by ∆ZCHN

it , defined by equation (44), and ∆ 1
Jit

∑
(j,g)∈Yit ln

(
IMg

IND,CHN,t

)
is instrumented by ∆ZChinaAlt

it = ∆ 1
Jit

∑
(j,g)∈Yit ln

(∑
k∈CNo India IMg

k,t

)
, where ∆ is the time differencing operator according

to calendar year. All regressions include year fixed effects. AP F-statistic for excluded instrument equals 24.76 for columns

(1) through (4) and equals 27.43 for columns (5) through (8). Total Specialization refers to ∆OPit

(
~Sit,

~
ω̃
j|g
it

)
, while Intensive

Margin, Product Dropping, and New Product refer to terms (I), (D) and (N) in equation (49), respectively, with xjgit = ω̃
j|g
it .

Standard errors treat demand and production function estimates as data.

8.8 Appendix H: The Transformation Function and Optimal Input Allo-

cations

In this section, I compare the approach for estimating productivity in multi-product firms developed

in this paper, to the transformation function approach, as in Diewert (1973) and more recently Dhyne

et al. (2017). In particular, I show that that Assumptions 1 through 6 imply a simple functional form for

the transformation function. However, this function depends on Jit = |Yit| unobservable plant-product

specific TFP terms. Therefore, without more restrictions, the transformation function cannot feasibly

be estimated. I then show that the approach used in this paper can be characterized as a way to solve

to “too many unobservables” problem inherent to the structure of the transformation function.

As per Appendix A, one may define the transformation function as the maximal level of output that

can be obtained for some reference good r ∈ Yit, given aggregate input vector ~Xit, a vector of firm-

product specific TFP terms, ~ωit, and some vector or other outputs ~Y −rit , i.e. Y r
it = T̃ (~Y −rit ,

~Xit, ~ωit). It

turns out that it is very simple to solve for an equivalent representation of the technology, the symmetric

for the transformation function (Diewert 1973), given by Y r
it − T̃ (~Y −rit ,

~Xit, ~ωit) ≡ T (~Yit, ~Xit, ~ωit) = 0. To

obtain the symmetric transformation function, note that by Lemma 1, as long as the input allocation

problem has a unique solution, then input ratios are constant across production lines, and therefore

Xj
it = SjitXit for all X ∈ (K,M). Substituting this equation into the production function, and using the

fact that the production technology is homogenous of degree φ > 0 yields:

Y j
it = exp(ωjit)(S

j
it)
φF ( ~Xit).

Rearranging the above yields:
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(
Y j
it

exp(ωjit)

) 1
φ

= Sjit

(
F ( ~Xit)

) 1
φ
.

Finally, summing over all j ∈ Yit and then taking this expression to the power of φ yields:∑
j∈Yit

(
Y j
it

exp(ωjit)

) 1
φ

φ

= F ( ~Xit). (82)

Note that (82) is a simple representation of the symmetric transformation function, since we can

also use (82) to write T (~Yit, ~Xit, ~ωit) =

(∑
j∈Yit

(
Y jit

exp(ωjit)

) 1
φ

)φ
− F ( ~Xit) = 0.

Note that the symmetric transformation function here is seperable, in the sense defined by Hall (1973),

i.e. we are able to write the transformation function as the sum of two functions, one of which depends

on outputs, and another that depends on inputs, T (~Yit, ~Xit, ~ωit) = Ait(~Yit)−B( ~Xit). It is worth noting

in passing that one of the key findings in Hall (1973), is that that separable transformation functions are

almost always the result joint technologies, which are multi-product production processes that cannot

be written as a series of independent production technologies. Since the production process considered in

this paper is inherently non-joint, as per Hall (1973), the fact that I obtain a seperable transformation

function may appear surprising. Note, however, that the only case where a a non-joint production

process leads to a separable transformation function is if the production technology across production

lines within a firm only differs by a scalar multiple. This is exactly equivalent to my Assumption 2,

which is why the transformation function is seperable.

The key challenge for identifying the shape of transformation function empirically is that (82) has

Jit ≡ |Yit| unobservables. As a result, estimation via GMM is immediately unavailable, since it is

impossible to simply use (82) to solve for each value of ωjit. There are, of course, restrictions that one

could place on the variation of TFP that could lead to identification. The easiest of these is to, for

example, follow De Loecker et al. (2016) and assume ωjit = ωit ∀j ∈ Yit. This leads to the simple

transformation function: (∑
j∈Yit

(
Y j
it

) 1
φ

)φ

= exp(ωit)F ( ~Xit). (83)

The above simplified transformation function could immediately be used to identify firm-level TFP

using standard non-linear GMM techniques, and would have the added advantage of allowing one use

to multi-product firms directly in estimation, rather than relying on a selected sample of single product

firms to estimate the production technology. Another approach would be to put some parametric

structure on the distribution of the unobservable ωjit terms, and then using maximum likelihood for

estimation. This would have the cost of making endogeneity difficult to deal with, as one would also

have to model the correlation between ~ωit and ~Yit.

Another approach, which is equivalent to the approach described in this paper, is to use price

variation within the firm to identify within-firm TFP dispersion, and then combine that with (82).
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Specifically, rewrite (82) as:(∑
j∈Yit

(
Y j
it

) 1
φ

(
exp(ωrit)

exp(ωjit)

) 1
φ

)φ

= exp(ωrit)F ( ~Xit), (84)

where ωrit is productivity of some reference good r ∈ Yit. To make estimation of (84) feasible, we need

to identify relative TFP within the firm,
exp(ωrit)

exp(ωjit)
. To do this, first consider the firm’s conditional cost

minimization problem after having solved for the optimal input allocations given ~Xit, as described in

Appendix A. Rewriting their conditional cost minimzation problem in terms of the symmetric transfor-

mation function yields:123

Min
~Mit

∑
M∈M

WM
(
Mit, A

M
it

)
Mit

subject to

∑
j∈Yit

(
Y j
it

exp(ωjit)

) 1
φ

φ

= F ( ~Xit),

(85)

with associated Lagrangian:

L =
∑
M∈M

WM
(
Mit, A

M
it

)
Mit + λ


∑
j∈Yit

(
Y j
it

exp(ωjit)

) 1
φ

φ

− F ( ~Xit)

 . (86)

Letting C
(
~Kit, ~Yit, ~ωit, ~Ait

)
denote the conditional cost function for static inputs, as before, then

then by the envelope theorem:

MCj
it =

∂C

∂Y j
it

= λ

∑
j∈Yit

(
Y j
it

exp(ωjit)

) 1
φ

φ−1(
Y j
it

exp(ωjit)

) 1
φ

1

Y j
it

. (87)

Using the above expression to examine marginal cost ratios between an arbitrary good j and the

reference good r yields
MCjit
MCrit

then yields:

MCj
it

MCr
it

=

 Y jit
exp(ωjit)

Y rit
exp(ωrit)


1
φ

Y r
it

Y j
it

. (88)

Solving for
(

exp(ωrit)

exp(ωjit)

) 1
φ

in this expression yields:

(
exp(ωrit)

exp(ωjit)

) 1
φ

=
Y j
itMCj

it

Y r
itMCr

it

(
Y r
it

Y j
it

) 1
φ

. (89)

Substituting (89) back into the transformation function (84) yields:

123Recall that the conditional cost minimization problem takes the level of dynamic inputs, such as capital, as given,
and as such the level of dynamic input costs are taken as given, and are therefore suppressed in the formulation of costs.

95



Y r
it

(Y r
itMCr

it)
φ

(∑
j∈Yit

Y j
itMCj

it

)φ

= exp(ωrit)F ( ~Xit), (90)

or, after re-arranging and using the fact that the production function is homogeneous of degree φ > 0

Y r
it =

(
Y r
itMCr

it∑
j∈Yit Y

j
itMCj

it

)φ

exp(ωrit)F ( ~Xit) = exp(ωrit)F

(
Y r
itMCr

it∑
j∈Yit Y

j
itMCj

it

~Xit

)
. (91)

Since marginal costs can be estimated from price and quantity data, there is only one unobserv-

able in (91), the firm-product level TFP term, and therefore standard GMM techniques can be used.

More important, note that (91) equivalent to the firm-product level production function equation after

using the input allocation rule (9) to estimate input shares. As a result, the approach used in this

paper to estimate productivity in multiproduct firms can also be characterized as using pricing (and

therefore marginal cost information) to pin down relative TFP within a firm, to make estimation of the

transformation function feasible.
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