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1 Introduction

What factors can enhance innovation is a question of enormous interest, as creation

of new technology is the key driver of long-run economic growth. There is a growing

recognition that the transmission of knowledge plays an essential role in the develop-

ment of new ideas (Cohen and Levinthal, 1989; Aghion and Jaravel, 2015). Going back

to Marshall (1920), economists have argued that the transmission of knowledge is fa-

cilitated by geographic proximity. Geographic proximity not only improves the infor-

mation flows across innovation activities, but also fosters the communications between

the production workers and the researchers. While studies have focused on knowledge

spillovers across innovation activities(Jaffe et al., 1993; Caragliu and Nijkamp, 2015), lit-

tle attention has been paid to the potential spillovers from production to innovation.

Understanding the role of production in fostering innovation is particularly relevant as

the employment in U.S. manufacturing has shrunk by nearly 30 percent since the year

2000. In this paper, I evaluate and quantify the importance of production proximity for

innovation efficiency.

First, I document the geographic concentration of innovation and production activ-

ities for U.S. manufacturing industries by using a novel and comprehensive plant-level

data from the Census Bureau. To identify the innovation and production activities at

the micro level, I link the Longitudinal Business Database (LBD) with the Business R&D

and Innovation Survey (BRDIS). It enables me to measure the spatial distribution of

these activities.

I quantify the concentration pattern of innovation and production activities from

two aspects. I begin by using the Ellison and Glaeser (1997, hereafter EG) metric of ag-

glomeration to measure the location pattern of innovation and production activities,

respectively. Then I use the EG metric of coagglomeration to measure how colocated

the innovation and production activities are within an industry. I find that (i) innovation

is more agglomerated than production in the majority of industries; and ii) innovation

and production activities are coagglomerated both in the absolute sense and relative

to the coagglomeration of industrial production. The spatial distribution of innovation

and production suggests that gains from geographic concentration are more significant

for innovation than production (Capello and Lenzi, 2014; Buzard et al., 2015). More im-
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portantly, it highlights the importance of locating innovation and production facilities

close to each other.

Second, motivated by the stylized facts, I develop and estimate an empirical model

of production and innovation within a manufacturing firm to quantify the private re-

turns to R&D, measured in terms of productivity gains generated by a marginal increase

in R&D. The primary goal is to assess if the returns to R&D are higher when innovation

plants are in regions with more production workers from their own industry. Building

on the recent work by Aw et al. (2011), Doraszelski and Jaumandreu (2013) and Bøler

et al. (2015), the model assumes that a plant’s revenue is subject to the plant-specific

performance which evolves according to a Markov process. The increment in plant per-

formance depends on the R&D investment of the plant itself, the interaction between

its R&D investment and the local manufacturing employment, as well as the transfer of

technology from the other R&D plants within the same firm. A unique feature of my

model is to consider spillovers from the local manufacturing to innovation explicitly.

The inclusion of the spillovers allows for the possibility of learning from the production

process. Local production workers are a source of knowledge that can enhance plants’

R&D efficiency, which, in turn, has an impact on plant performance.

I construct a unique plant-level panel data on R&D investment and domestic pro-

duction for U.S. R&D firms in the manufacturing sector from 2002-2012 for my estima-

tion. These data allow me to observe the input and output for each production plant,

and the R&D expenditures for each innovation plant.

My empirical results show that innovating plants obtain significantly higher returns

to R&D if they are located in counties with more of their own industry production work-

ers. It suggests that there are positive spillovers from the local production to innovation.

All else equal, doubling the local own industry manufacturing employment increases

the impact of a plant’s own investment on its productivity by 21.4%. My analysis is in-

formative for understanding the role of local manufacturing in enhancing efficiency of

innovation plants. It supports the view put forth in Naghavi and Ottaviano (2009) that

feedback from manufacturing plants is important for research labs.

Third, I evaluate the macroeconomic implications of my empirical findings by ex-

tending the multi-region production and trade model developed by Arkolakis et al. (2018)
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with two key modifications: (i) allowing firms to increase productivity through R&D; and

(ii) incorporating the spillovers from local manufacturing to innovation. Guided by my

empirical findings, my model assumes that regions’ capability in fostering innovation

increases with their employment of production workers. Firms born in regions that are

more capable of fostering innovation enjoy a higher return to R&D and spend more on

innovation. New technologies created through R&D can be used in multi-region pro-

duction (MP). Firms face a tradeoff between market proximity and production capabil-

ity when choosing where to locate their production. Given the difference in regions’

capability in innovation and production, the availability of MP leads some regions to

specialize in production and others in innovation.

I take the model to the data in year 2012, and calibrate it to 48 states in the U.S. and

the rest of the world (ROW). My quantitative analysis uses the China shock to evaluate

the effects of production reallocation on the innovation efficiency. I model the rise of

China as the productivity shocks to the ROW, and use the predicted changes in the U.S.

imports from China during 1997-2012 to quantify the size of these productivity shocks.

I find that the relocation of production workers due to the China trade shock leads to

a moderate reduction in both process and product innovation. States with a larger de-

cline in manufacturing employment experience a more substantial loss in innovation

efficiency.

My analysis brings together three strands of the literature. First, it contributes to

the literature on the agglomeration and coagglomeration of economic activities. Ellison

and Glaeser (1997) and Duranton and Overman (2008) find that industrial production

is geographically concentrated. The agglomeration of industrial production can be ex-

plained by the Marshall forces of labor pooling, input sharing and knowledge spillovers

(Ellison et al., 2010; Faggio et al., 2017). Much less is known about the coagglomeration

of innovation and production activities due to limitation in data availability (Audretsch

and Feldman, 1996; Carlino and Kerr, 2015). I contribute to this line of research by using

a novel micro level dataset to uncover the spatial distribution of innovation and produc-

tion activities.

Second, my analysis is closely related to the work on R&D investment and plant pro-

ductivity. Building on the knowledge capital model by Griliches et al. (1979), as well as
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more recent work by Aw et al. (2011), Doraszelski and Jaumandreu (2013), and Bøler et

al. (2015), I evaluate the impact of R&D investment on plant productivity. The focus on

multi-unit firms also relates my analysis to Bilir and Morales (2016), which allows for

the intra-firm transfer of technology. My approach is novel in its explicit consideration

of the local employment impact on innovation efficiency. The estimates support the

theories proposed by Duranton and Puga (2001) and Naghavi and Ottaviano (2009) that

production plays an important role in fostering innovation.

Third, my paper also contributes to the studies that seek to understand the con-

sequences of trade shocks for innovation. The empirical evidence about the impact of

trade shocks on innovation is mixed. While Bloom et al. (2016) finds that European firms

facing higher levels of Chinese import competition create more patents, raise their IT in-

tensity and increase their productivity, Dorn et al. (2016) shows that the foreign import

competition reduces U.S. patent production. I propose a new channel to evaluate the

impact of trade shocks on innovation. Trade shocks affect the local innovation through

production reallocation. Innovation efficiency is enhanced by local manufacturing. The

increased exposure to import competition leads to the decline of manufacturing, and

thus reduces the local innovation efficiency. To quantify the impact of trade shocks on

innovation through the new channel, I extend Arkolakis et al. (2018) by incorporating

the local spillovers from the innovation and production.

The rest of this paper is organized as follows. Section 2 documents stylized facts

about geographic concentration of innovation and production activities. Section 3 de-

velops and estimates the empirical model to assess the spillovers from the local manu-

facturing to innovation. Section 4 extends the Arkolakis et al. (2018) model to evaluate

the macroeconomic implications of my empirical findings. Section 5 concludes.

2 The Location Pattern of Innovation and Production

Economic activities are geographically concentrated to utilize the advantages of prox-

imity.1 Activities with more substantial gains from proximity tend to be more closely lo-

cated (Ellison and Glaeser, 1997; Ellison et al., 2010). Thus, the concentration patterns of

1According to Marshall (1920), economic activities are geographically concentrated to reduce the costs
of obtaining inputs and supplying outputs, to share a broader labor market, and to enjoy intellectual or
technology spillovers.
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economic activities provide suggestive evidence on the importance of geographic prox-

imity to these activities.

In this section, I use a novel plant-level dataset of innovation and production to es-

tablish two critical stylized facts of their agglomeration and coagglomeration patterns.

2.1 EG Metrics and Data

Measuring the spatial distribution of innovation and production activities has long been

recognized as extremely difficult due to the lack of data (Audretsch and Feldman, 1996;

Carlino and Kerr, 2015). In this section, I exploit detailed and comprehensive establishment-

level data from two Census Bureau surveys —the Longitudinal Business Database (LBD)

and the Business R&D and Innovation Survey (BRDIS)—to document the geographic

concentration of innovation and production activities for manufacturing industries. The

LBD covers the universe of establishments in the U.S. and contains annual data on their

size, industry, geographic location, and legal form of organization. The BRDIS is a con-

fidential firm-level survey conducted annually by the U.S. Census Bureau in partner-

ship with the National Science Foundation (NSF). It collects detailed information on

firms’ R&D activities including R&D-related employment, R&D expenditure, and the ge-

ographic location of domestic and foreign R&D performance. Linking the LBD with the

BRDIS allows me to identify the innovation and production activities at the establish-

ment level. Thus, it enables me to document the geographic concentration of innova-

tion and production activities for manufacturing industries.

I measure the industry-level geographic concentration of innovation and production

activities by using Ellison and Glaeser (1997) metrics. The EG metrics are derived from

a sequential profit-maximizing plant location choice model. It compares the degree

of spatial concentration of economic activities in an industry with what would arise if

these activities were randomly distributed across locations. I will focus on the four-digit

manufacturing industries of the 2002 North American Industry Classification System

(NAICS) and measure the concentration of these activities at the county level for the

sample period 2008-2012.

I quantify the concentration pattern of innovation and production activities in two

ways. First, I use the EG metric of agglomeration to measure the location pattern of
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innovation and production activities, respectively. The EG agglomeration measure for

economic activity A in industry k is

γAk ≡
∑

l

(
sAlk − xl

)2 − (1−
∑

l x
2
l )H

A
k

(1−
∑

l x
2
l ) (1−HA

k )
(1)

where A ∈ {P, I} denotes the type of economics activities. A = P when measuring the

agglomeration pattern for production activities andA = I for innovation ones. sAlk is the

production (innovation) employment share in industry k at county l and xl is county

l’s share of total population. HA
k is the Herfindahl index of the industry k’s production

(innovation) plant size distribution2.

The EG metric of agglomeration measures the tendency for production (innovation)

activities to be closely located. γAk = 0 is a no-agglomeration benchmark such that pro-

duction (innovation) activities are randomly located. γAk = 1 indicates that production

(innovation) activities are perfectly agglomerated with all the production (innovation)

employment in a single county.

Second, I use the EG metric of coagglomeration to quantify how collocated the in-

novation and production activities are within an industry.3 The EG coagglomeration

measure of innovation and production for industry k takes the form:

γck ≡
∑

l

(
sPlk − xl

) (
sIlk − xl

)
1−

∑
l x

2
l

(2)

where sPlk is the production employment share in industry k at county l, sIlk is the inno-

vation employment share in industry k, and xl is the population share of county l.

The EG coagglomeration measure captures the tendency for innovation activities to

locate near production ones. It is closely related to the covariance of the county’s em-

ployment shares in innovation and production. Negative values of the coagglomeration

measure arise when innovation and production activities are agglomerated in different

areas. The coagglomeration measure is zero when the production and production ac-

2The subtraction of HA
k is a adjustment that accounts for the fact that

∑
l

(
sAlk − xl

)2
measure is ex-

pected to be larger in industries consisting of fewer larger plants if locations were chosen completely at
random.

3The EG coagglomeration metric takes a simpler form when applied to measure the concentration of
two activities. See appendix for the relationships between EG coagglomeration measure for two economic
activities and for a group of activities.
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tivities are randomly located.

2.2 Two Facts on the Spatial Distribution of Innovation and Production

Fact 1: Innovation activities are more agglomerated than production ones in the major-

ity of manufacturing industries.

Figure 1 plots the agglomeration of innovation in each manufacturing industry against

that of its production. Each circle represents a four-digit NAICS industry, and the size

of the circle reflects the size of the industry. The x-axis measures the agglomeration

pattern of innovation activities, and the y-axis measures that of production ones. The

solid line is the 45-degree line. Most of the circles lie under the 45-degree line, implying

that innovation activities are geographically more concentrated than production ones

in the majority of manufacturing industries. This pattern suggests that the gains from

concentration are more significant for innovation than production activities.

Figure 1: Agglomeration Indices of Innovation and Production
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Notes: The figure plots the agglomeration of innovation in each manufacturing industry against that of its
production. Each circle represents a four-digit NAICS manufacturing industry, and the size of the circle
reflects the size of the industry. The solid line is the 45-degree line.

Fact 2: Innovation and production activities are coagglomerated in the majority of man-
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ufacturing industries.

Figure 2 plots the coagglomeration measure of innovation and production for each

industry against the max coagglomeration measure of its production with other indus-

tries. The x-axis measures the coagglomeration of innovation and production for each

manufacturing industry. The majority of coagglomeration measures are greater than 0,

implying that innovation tends to locate closely with production in most manufacturing

industries.

To evaluate the strength of the coagglomeration between innovation and production

within each industry, I compare it with the coagglomeration of cross-industry produc-

tion. Production activities are known to be closely colocated across industries (Ellison

et al., 2010; Duranton and Overman, 2008; Faggio et al., 2017),4 and therefore, the co-

agglomeration of cross-industry production serves as a good benchmark. For each in-

dustry, I compute the pairwise coagglomeration measures for its production with other

manufacturing industries’ production. Table X in the Data Appendix summarizes the

mean, 25th percentile, median, 75th percentile, and max coagglomeration indices of

the cross-industry production for each manufacturing industry. The mean and median

coagglomeration of cross-industry production are centered at zero and skewed towards

positive values. The y-axis in Figure 2 reports max coagglomeration index of the cross-

industry production for each manufacturing industry. Most industries lie under the 45-

degree line in Figure 2, suggesting that locating production close to its own industry

innovation is more important than locating it close to any other industry’s production.

3 The Returns to R&D When Innovation Collocated with Production

The coagglomeration of innovation and production provides suggestive evidence on the

importance of the two activities being closely located. This section provides economet-

ric evidence on the importance of proximity to production on innovation efficiency.

4Ellison et al. (2010) finds that the coagglomeration of the industry’s production can be explained by
the Marshallian forces of input sharing, labor pooling, and knowledge spillovers.
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Figure 2: Coagglomeration of Innovation and Production vs. Max Coagglomeration of
Production with Other Industry
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Notes: The figure plots the coagglomeration measure of innovation and production for each industry
against the max coagglomeration measure of its production with other industries. Each circle represents
a four-digit NAICS manufacturing industry, and the size of the circle reflects the size of the industry. The
solid line is the 45-degree line.

3.1 Empirical Model

I develop and estimate an empirical model of production and innovation within the

manufacturing firm to quantify the returns to R&D, primarily to assess if the returns

are higher when innovation plants are located in places with more own industry pro-

duction workers. The empirical model considers a manufacturing firm i with a set of

active plants j ∈ Ji,t.5 In each period, it determines the optimal levels of variable in-

puts, capital investment, R&D expenditures, and output prices for each of its plants to

maximize the firm-level profits. As my focus is on exploring the spillovers from the local

production to innovation, I restrict attention here to the R&D investment decisions and

5Plants within a manufacturing firm can be one of the following functional forms: innovation plants,
production ones, and the mixed ones that both innovate and produce. For simplicity, in this paper, inno-
vation plants refer to these that conduct R&D. It can either be a plant only conducts R&D or a mixed one.
The same applies to production plants.
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process of plant performance evolution and abstract from the innovation plants’ deci-

sion to enter or exit. In the subsections below, I will first model the revenue functions

for these production plants within the firm, then model the evolution of the plants’ per-

formance, and finally define the firms’ maximization problem.

3.1.1 Revenue Function

Assume plant j locates at l and operates in industry k.6 Following Aw et al. (2011) and

Bøler et al. (2015), I model its short-run marginal cost function at period t as 7

ln cjt = β0 + βk ln kjt + βw lnwjkt − ψjt, (3)

where kjt is the capital stock of plant j at period t, wjkt is the wage common to all plants

in industry k, andψjt is the plant-specific productivity. The marginal costs of production

are lower for plants with higher productivities. Labor is a variable input, whereas capital

is determined by the investment and capital stock in the previous period.

The product market is characterized by monopolistic competition, and the demand

faced by plant j in industry k is

qjt = Qjkt (pjt/Pjkt)
−σ exp [ζjt (σ − 1)] , (4)

where σ > 1 is the constant elasticity of substitution, pjt is the output price of plant j,

and ζjt is a plant-specific demand shifter. The variable Qjkt and Pjkt are the industry-

level demand and price index.

Given the cost and demand function described above, firm i sets the optimal price

pjt to maximize the plant j’s profits. The log revenue of plant j depends on the aggregate

market conditions, the capital stock and the plant-specific performance,

lnRevjt = γ0 + ln
(
QjktP

σ
jkt

)
+ (1− σ) βw lnwjkt + (1− σ) (βk ln kjt − zjt) + ujt, (5)

6In this section, I write k and l as the subscript of j to indicate the industry and location of plant j.
7The marginal cost function here only considers the marginal cost of production. The R&D investment

decisions and the cost of innovation will be modeled in the Section 3.1.2.
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where γ0 ≡ (1 − σ)ln( σ
σ−1

) + (1 − σ)β0, and ujt is the measurement error. Denote zjt =

ψjt + ζjt as the plant performance. It is an endogenous state variable that captures

two sources of heterogeneity: plant-specific productivity ψjt and plant-specific demand

shock ζjt. R&D investment can boost plant performance through raising its productivity

or product quality. Plants with higher performance zjt obtain a higher revenue.

3.1.2 The Impact of Innovation on Plant Performance

The performance of plant j evolves as a Markov process that depends on its own in-

vestment in R&D, the transfer of technology from other plants in the same firm and a

random shock,8

zjt = α0 + α1zjt−1 + α2z
2
jt−1 + Vjlkt +

∑
j′∈Jt

γjj′Vj′
l′k′ t

+ ηjt, (6)

where Vjlkt captures the increase in plant performance through its own investment in

R&D. Following Aw et al. (2011), Doraszelski and Jaumandreu (2013) and Bøler et al.

(2015), I assume that the increment in plant performance at period t depends on its in-

vestment in R&D in the previous period. To explore and quantify the spillovers from

the local production, I assume it also depends on the interaction between R&D in-

vestment ln rjt−1 and the employment of local production workers in its own industry

ln (empjlkt−1). The increment in plant performance Vjlkt is written as

Vjlkt = β1 ln rjt−1 + β2 ln rjt−1 ln (empjlkt−1) . (7)

The inclusion of ln rjt−1 ln (empjlkt−1) allows for the possibility of spillover from pro-

duction to innovation within the same industry.9 The rationale is that the local employ-

ment of its industrial production workers is a source of knowledge that can enhance

8The main focus of this paper is to explore and quantify the spillovers from the local manufacturing to
innovation. Thus, I restrict my attention to the existing innovation plants and look at a subset of predeter-
mined innovation plants. Tecu (2013) estimate an R&D location choice model to assess the importance
of manufacturing on firms’ innovation location choice. She finds that manufacturing plays an important
role in determining innovation location, and both the internal and external linkages between innovation
and production are important for the innovation plants.

9The spillover from local production to innovation considers both the internal feedbacks from its own
local factories but also the manufacturing know-how learned from the other firms.
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plant innovation, through which it affects the plant’s future performance. The empir-

ical analysis also includes an alternative specification with discrete R&D expenditure

(R&D dummy).

The term
∑

j′∈Jt γjj′Vj′l′k′ t in Equation (7) captures intrafirm impact of R&D invest-

ment. Bilir and Morales (2016) shows that technological improvements developed in a

plant can be shared with other plants within the same firm. I incorporate the sharing

of proprietary technology in my empirical model by allowing the intra-firm transfer of

proprietary technology across plants in the same industry.10 τjj′ captures the knowledge

communication frictions when transferring technology from plant j′ to plant j. Assume

the decay of technology is a function of distance between plant j and j′ as follows

∑
j′∈Jt

τjj′Vj′
l′k′ t

=
∑
j′∈Jt

[β4 + β5 ln β (distjj′)]Vj′
l′k′ t

. (8)

The term ηjt in Equation (6) represents shocks to the performance of plant j at time

t that are not anticipated at t− 1.

3.1.3 Firm Optimization Problem

In each period t, firm i determines the optimal levels of labor Lit, capital investment Iit,

R&D investment Rit, and output prices Pit for each of its plants j active at time t, as well

as the set of plants that will be active at t + 1, Ji,t+1. These decisions are made based on

the state vector Sit that firm i faces.

The state vector for plant j is

Sijt =
(
zjt, kjt−1, wjt, Pjkt, Qjkt, p

k
jt, ln (empjlkt−1) , Fjt

)
, (9)

where pkjt is the price of capital and Fjt is a fixed cost of operating plant j.

Decisions at period t regarding plant j’s investment and employment depend on zjt.

10In the case when the innovation-only plants conduct R&D to improve the performance of the pro-
duction and the mixed plants, the spillovers are from the industry to which it provides technology. For
example, if the innovation plant invests in R&D to improve the performance of the auto manufacturing
plants, then the local production workers in the auto industry will be sources of expertise that can en-
hance the innovation plant R&D efficiency. My data sample includes firms that run businesses in more
than one 3-digit NAICS industries. In this case, I restrict the transfer of technology to be only within the
plants in the same 3-digit NAICS industry.
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Labor is a variable input, whereas capital is fixed in the short run. It’s determined by

the investment and capital stock in period t − 1, according to the law of motion kjt =

(1 − δk)kjt−1 + ijt−1. Decisions on plant j’s investment in R&D also depend on the local

employment of its own industry production workers ln (empjlkt−1).

If plant j is active at period t, the profit function of plant j is

Π(sjt, ijt, ljt, pjt, rjt) =
1

σ
Rev (Zjt, kjt, Pjkt, Qjkt, wjt)− rjt − Ck

(
ijt, p

k
jt, kjt

)
− Fjt, (10)

where Ck(·) is the cost function of investment in capital.

The firm i’s optimization problem is

V (Sit) = maxXit

[∑
j∈Jit

Π (sijt, iijt, nijt, pijt, rijt) + δE (V (Sit+1) |Sit, Iit,Rit, Jit+1)

]
, (11)

where Xit = (Jit+1,Lit,Mit, Iit,Rit,Pit) is a vector of control variables, V (·) is the value

function, Π(·) is the profit function and δ is the discount factor.

3.2 Estimation

To estimate the impact of local manufacturing on the returns to R&D, I proceed in two

steps. First, I estimate the revenue function in Equation (5). Second, I estimate the

Markov process governing the evolution of firm performance in Equation (6).

Step 1 Estimating Revenue Function Plant performance zjt is likely to affect its de-

mand for labor and capital. Therefore, OLS estimates of the revenue function suffer

from the simultaneity bias. I utilize the insights from Olley and Pakes (1996) and Levin-

sohn and Petrin (2003) and rewrite the unobserved performance in terms of some ob-

served variables that are correlated with it. In general, plants’ usages of materials, elec-

tricity and energy depend on the level of its performance. Therefore, I rewrite the level

of productivity, conditional on the capital stock, as a function of the variable input lev-

els, i.e. zjt (kjt,mjt, njt, ejt). This allows me to use the expenditures on materials mjt,

electricity ejt and energy nit by the firm to control for the productivity in Equation (5).
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The Equation (5) can be rewritten as

lnRevjt = γ0 + djkt + h (kjt,mjt, njt, ejt) + ujt, (12)

where the function h (kjt,mjt, njt, ejt) = (1− σ) (βk ln kjt − zjt (kjt,mjt, njt, ejt)) captures

the combined effects of capital and plant performance on revenue and djkt = ln
(
QjktP

σ
jkt

)
+

(1− σ) βw lnwjkt is a set of industry-time dummies capturing industry-wide demand and

cost trends. I specify h(·) as a cubic function of its arguments and estimate Equation (12)

by OLS.

Step 2 Estimating Performance Evolution Function In the second step, I rewrite the

plant performance zjt in terms of predicted ĥjt from the first stage

zjt = − 1

1− σ
ĥjt + βk ln kjt. (13)

Substituting the zjt into Equation (6) for the performance evolution gives the estima-

tion equation

ĥjt = −α∗0 + β∗k ln kjt + α1

(
ĥjt−1 − β∗k ln kjt−1

)
− α∗2

(
ĥjt−1 − β∗k ln kjt−1

)2

− (β∗1 ln rj,t−1 + β∗2 ln rj,t−1 ln (empjlkt−1)) (14)

−
∑
j′

(β3 + β4 ln (distjj′)) (β∗1 ln rj′,t−1 + β∗2 ln rj′,t−1 ln (empjlkt−1))− η∗jt,

where the superscript ∗ denotes that the coefficient is multiplied by 1− σ.11

The second stage estimation equation relates the predicted revenue to the current

and lagged capital stock, the lagged predicted revenue, lagged R&D expenditure of its

own, and that of other plants in the same firm, as well as the lagged local production

employment of its industry.

I estimate the second stage equation with the generalized method of moments (GMM).

The identification of the parameters depends on the timing assumptions. ηjt are the

shocks to plant performance between t− 1 and t that are unanticipated by the firm. By

11Except for α∗2, α∗2 = α2

1−σ .
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construction, the shocks are not correlated with the predetermined variables kjt−1,rjt−1,

rj′t−1, ln(empjt−1), ln(empj′t−1) and ln(distjj′t−1). I allow the constant in the Markov pro-

cess to vary by industry by including industry fixed effects (3-digit NAICS). In total, it

gives me 31 moment conditions with 28 unknown.

The α and β can be backed out given an estimate of σ. The demand elasticity σ is

estimated from total variable cost function. Given the CES demand, the total variable

cost TCjt can be written as a function of its total revenue Revjt:

TCjt = (1− 1

σ
)Revjt + εjt, (15)

where the error term εijt is the measurement error in total cost.

3.3 Data

Estimating the impact of local manufacturing on the plant innovation efficiency re-

quires data on R&D expenditure for each innovation plant, input and output for each

production plant, as well as the local employment of manufacturing industries. By com-

bining several confidential datasets from the Census Bureau, I create a plant-level panel

data on R&D investment and domestic production for U.S. R&D firms in the manufac-

turing sector from 2002-2012. Details regarding data construction are documented in

Data Appendix.

Firm-level data on R&D investment are available between 1972 and 2015 from the

BRDIS.12 The BRDIS utilizes a stratified sample frame and samples firms proportion-

ally within each strata to their known R&D activity, or to their payroll if R&D activity is

unknown. It surveys about 45,000 firms each year and includes a certainty component

for firms with payroll or R&D expenditures above a certain threshold. My data sample

is mainly composed of these large firms which are consistently surveyed by the BRDIS.

The BRDIS asks respondents to report the total domestic R&D expenditure as well as the

allocation of their spending across states.13 The firm-level information on geographic

12This survey was known as the Survey of Industrial Research Development (SIRD) from 1972 through
2007. The SIRD is the predecessor of the BRDIS.

13In the BRDIS survey, R&D is defined as planned, creative work aimed at discovering new knowledge
or developing new or significantly improved goods and services. This includes 1) activities aimed at ac-
quiring new knowledge or understanding without specific immediate commercial application or use (ba-
sic research); 2)activities aimed at solving a specific problem or meeting a specific commercial objective
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location of domestic R&D activities allows me to identify innovation plants and their

R&D expenditure within an R&D-performing firm when supplemented by the plants

location information from the LBD. In my empirical model, the innovation plants are

predetermined, thus I define an establishment as an innovation plant if it has ever done

R&D during the period pre-sample 1972-2001.

Plant-level production data are from the Census of Manufacturers (CMF) for years

ending in 2 and 7, and from Annual Survey of Manufacturers (ASM) in other years.14 The

CMF/ASM collects production data for manufacturing establishments on their value of

shipments, employment and payroll, cost of inputs, number of products, and capital.

The local manufacturing employment is constructed by using data from the LBD. It’s

measured at the county level and on the 4-digit NAICS manufacturing industries.

In total, my data sample includes 1,500 R&D firms. Table 1 provides the summary

statistics of the R&D firms. Within an R&D firm, the average number of innovation sites

is 3.3, and the median is 2. These innovation sites locate in about 1200 counties and 400

commuting zones. The average number of production sites is 9.7, with the median of 4.

On average, the innovation sites spend 12,860 thousand dollars on R&D each year.

3.4 Empirical Results

3.4.1 Baseline Estimates

The estimates of the empirical model described above are reported in Table 2. The up-

per panel presents the estimates of structural parameters in Equation (14). The lower

panel evaluates the mean plant performance elasticities with respect to its own R&D

investment, other plants’ R&D investment, and the distance between the technology

receiving and providing plants by using estimated structural parameters in the upper

panel. Columns (a) and (b) use a discrete measure of R&D, while (c) and (d) use a con-

tinuous measure.

(applied research) 3) systematic use of research and practical experience to produce new or significantly
improved goods, services, or processes (development). Thus costs for routine product testing, quality
control, and technical services are not included in the R&D expenditure.

14The ASM is a sample survey of approximately 50,000 establishments. For sample efficiency and cost
consideration, the big and important establishments in each industry are overrepresented. A number of
establishments are included in the sample with certainty and the remaining establishments are sampled
at a probability that is consistent with their relative importance in the industry or other key aggregations.
Further details on the ASM are provided in the Data Appendix.
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Table 1: Summary Statistics of the R&D Firms

Number of R&D firms 1500†

Average number of innovation plants within a firm 3.3

Median number of innovation plants within a firm 2

Average number of production plants within a firm 9.7

Median number of production plants within a firm 4

Average R&D expenditure at innovation plants (thousands) 12, 860†

Number of innovation counties 1200†

Number of innovation commuting zones 450†

Notes: This table reports the summary statistics of the R&D firms in the data sample. † indicates number
are rounded to thousands or hundreds to meet the Census disclosure requirements.

In columns (a) and (c), I first evaluate the influence of R&D investment on plant

performance in a specification that does not allow the spillovers from the local man-

ufacturing to innovation. The benchmark estimates show that a plant’s performance

increases in R&D investment. The results qualitatively match the recent estimates by

Aw et al. (2011), Doraszelski and Jaumandreu (2013), Bøler et al. (2015) and Bilir and

Morales (2016). The performance impact of a plant’s own R&D investment is econom-

ically significant, and that of other plants’ R&D investment is positive yet not precisely

estimated.

In columns (b) and (d), I include the interaction between R&D investment and local

manufacturing employment. The estimates of β2 are positive and statistically signifi-

cant, evidencing that innovating plants obtain significantly higher gains if they are lo-

cated in counties with more of their own industry production workers. It suggests that

there are positive spillovers from the local manufacturing to innovation. All else equal,

the estimates in column (b) indicate that doubling the local own industry manufactur-

ing employment increases the impact of a plant’s own investment on its performance by

21.4%. The empirical results contribute to our understanding of the role of local manu-

facturing in enhancing efficiency of innovation plants and it support the view put forth

in Naghavi and Ottaviano (2009) that feedback from manufacturing plants is important
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for research labs. The complementarity between innovation and manufacturing that I

find in columns (b) and (d) is also of importance from the innovation policy perspective.

The capital coefficient βk is negative and statistically significant across all specifica-

tions. It implies that with higher capital stock, the marginal costs are lower and revenue

is higher for firms. The coefficients α1 and α2 measure the impact of lagged produc-

tivity on current productivity. The estimates are strong and precisely estimated, indi-

cating impact of R&D on plant performance is persistent. The coefficients β3 and β4

quantify knowledge communication frictions when transferring technology within the

firm across plants, and the lower panel calculates the mean performance elasticity with

respect to distance. The estimates show that the longer the distance between the tech-

nology receiving and providing plants, the larger the performance losses will be. I check

the validity of the instruments with an overidentification test and the p-values from the

test are listed below the estimates in each column.

To retrieve the structural parameter α and β, I estimate σ from Equation (15). The

estimates of 1− 1
σ

is 0.6618 with the standard error of 0.0111.

3.4.2 Instrumenting Local Manufacturing Employment with Predicted Employment

A potential concern is the local employment might be positively correlated with the un-

observed shocks to plant performance. To address this concern, I instrument the local

manufacturing employment with a predicted one. The predicted local employment is

constructed by interacting the initial local employment shares with national growth of

industry employment a la Bartik (1991).

Using the pre-sample year 1997 as the base year, I predict the local manufacturing

employment for each 4-digit NAICS manufacturing industry by interacting the initial

shares of 6-digits NAICS subindustry in year 1997 with the national growth of the 6-

digits NAICS subindustry employment. The formula is as follows

pemplk4dt =
∑

k6d∈k4d

slk6d,1997 × gk6d,t, (16)

where pemplk4dt is the predicted manufacturing employment at county l in 4-digit NAICS

industry k at time t, slk6d,1997 is the initial share of each 6-digit NAICS subindustry within
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Table 2: GMM Estimates: Baseline

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4073∗∗∗ -0.4087∗∗∗ -0.4073∗∗∗ -0.4083∗∗∗

(0.0043) (0.0043) (0.0043) (0.0042)

α1 Performancet−1 0.9088∗∗∗ 0.9120∗∗∗ 0.9093∗∗∗ 0.9114∗∗∗

(0.0112) (0.0115) (0.0112) (0.0114)

α2 Performance2
t−1 0.0969∗∗∗ 0.0979∗∗∗ 0.0972∗∗∗ 0.0979∗∗∗

(0.0084) (0.0085) (0.0083) (0.0084)

β1 Log(R&Dt−1) 0.0014∗∗∗ -0.0005 0.0118∗∗∗ -0.0086∗

(0.0002) (0.0005) (0.0021) (0.0045)

β2 Log(R&Dt−1 )× Log(Empt−1) 0.0003 ∗∗∗ 0.0031∗∗∗

(0.0001) (0.0008)

β3 Constant 0.3216 0.2804 0.379 0.2187

(0.2567) (0.2464) (0.2628) (0.2467)

β4 Log(Dist.) -0.0763∗ -0.0783∗∗ -0.0788∗ -0.0631∗

(0.0398) (0.0375) (0.0407) (0.0375)

Own Plant R&D Elasticity 0.0014∗∗∗ 0.0014∗∗∗ 0.0118∗∗∗ 0.0124∗∗∗

(0.0002) (0.0002) (0.0021) (0.0019)

Other Plant R&D Elasticity 0.0001 0.0000 0.0016 -0.0000

(0.0002) (0.0001) (0.0016) (0.0011)

Distance Elasticity -0.0002∗ -0.0002∗∗ -0.0014∗ -0.0009∗

(0.0001) (0.0001) (0.0007) (0.0006)

Overidentification Test (p value) 0.81 0.31 0.82 0.34

Observations 106,000 106,000 106,000 106,000

Industry Effects Yes Yes Yes Yes

Notes: The upper panel reports the GMM estimates of structural parameters in Equation (14). Columns
(a) and (c) presents the estimates of the benchmark specification. Robust standard errors in parentheses
are clustered by county. Each specification reports the p-value for the overidentification restrictions test
(Hansen, 1982). The lower panel evaluates the mean plant performance elasticities by using estimated
structural parameters in the upper panel. R&D is measured as log(1+R&D) in columns (a) and (b), and a
binary variable in columns (c) and (d). *** denotes 1% significance, ** 5%, and * 10%.
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the 4-digit NAICS industry k at county l in year 1997 and the gk6d,t is the national growth

rate of each 6-digit NAICS subindustry between year 1997 and time t.

Table 3 reports the estimates when instrumenting local manufacturing employment

with a predicted one. It gives similar estimates on the structural parameters as our base-

line estimation in Table 2. The impact of local manufacturing on innovation efficiency

β2 is slightly lower.

3.4.3 Robustness Checks

Spillovers from the Local R&D A potential concern is that other than the spillovers

from the local manufacturing to the plant innovation, there are also spillovers from the

local R&D activities of the other firms. As a robustness check, I estimate a specification

that controls the spillovers from the local innovation. The increment in plant perfor-

mance in Equation (7) is written as

Vjlkt = β1 ln rjt−1 + β2 ln rjt−1 ln (empjlkt−1) + β5 ln rjt−1 ln(rdempjlt−1). (17)

where ln(rdempjlt−1) is the local R&D employment. Due to the data availability, I mea-

sure the local R&D employment at the commuting zone level.15 Local R&D employment

is measured as the total employment in the NAICS 5417 Scientific Research and Devel-

opment Services industry.

Table 4 reports the estimates for the robustness check. The inclusion of the spillovers

from the R&D activities to the plants’ innovation has a negligible impact on my results.

The estimated coefficient β5 for the spillovers from local R&D is not significantly differ-

ent from zero. Thus, there is no evidence suggesting the spillovers from local R&D to

plant innovation.

The Direct Impact of Local Employment on Plant Performance Another concern is

that the local employment might have a direct impact on plant performance. To account

15The plant-level data on R&D employment from the BRDIS is highly correlated with the R&D expen-
diture. Since the R&D investment is lumpy, local R&D employment measured by data from the BRDIS is
lumpy as well. Instead, I measure the local R&D employment by using data from the LBD and measured it
as the employment in the Scientific Research and Development Services industry. The county-level R&D
employment is limited, and thus I measure the local R&D employment at the county level.
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Table 3: GMM Estimates: Instrumenting Local Employment with Predicted Emp.

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4073∗∗∗ -0.4088∗∗∗ -0.4073∗∗∗ -0.4083∗∗∗

(0.0043) (0.0042) (0.0043) (0.0042)

α1 Performancet−1 0.9088∗∗∗ 0.9125∗∗∗ 0.9093∗∗∗ 0.9118∗∗∗

(0.0112) (0.0115) (0.0112) (0.0113)

α2 Performance2
t−1 0.0969∗∗∗ 0.0986∗∗∗ 0.0972∗∗∗ 0.0985∗∗∗

(0.0084) (0.0084) (0.0083) (0.0084)

β1 Log(R&Dt−1) 0.0014∗∗∗ -0.0001 0.0118∗∗∗ -0.0051

(0.0002) (0.0005) (0.0021) (0.0044)

β2 Log(R&Dt−1 )× Log(Empt−1) 0.0002∗∗ 0.0025∗∗∗

(-0.0001) (0.0008)

β3 Constant 0.3216 0.3638 0.379 0.3016

(0.2567) (0.2546) (0.2628) (0.2600)

β4 Log(Dist.) -0.0763∗ -0.0905∗∗ -0.0788∗ -0.0758∗

(0.0398) (0.0392) (0.0407) (0.0398)

Own Plant R&D Elasticity 0.0014∗∗∗ 0.0013∗∗∗ 0.0118∗∗∗ 0.0118∗∗∗

(0.0002) (0.0002) (0.0021) (0.0019)

Other Plant R&D Elasticity 0.0001 0.0001 0.0016 0.0004

(0.0002) (0.0001) (0.0016) (0.0012)

Distance Elasticity -0.0002∗ -0.0002∗∗ -0.0014∗ -0.0011∗

(0.0001) (0.0001) (0.0007) (0.0006)

Overidentification Test (p value) 0.81 0.25 0.82 0.34

Observations 106,000 106,000 106,000 106,000

Industry Effects Yes Yes Yes Yes

Notes: The upper panel reports the GMM estimates of structural parameters in Equation (14), instru-
menting local employment with the predicted one. Columns (a) and (c) presents the estimates of the
benchmark specification. Robust standard errors in parentheses are clustered by county. Each speci-
fication reports the p-value for the overidentification restrictions test (Hansen, 1982). The lower panel
evaluates the mean plant performance elasticities by using estimated structural parameters in the upper
panel. R&D is measured as log(1+R&D) in columns (a) and (b), and a binary variable in columns (c) and
(d). *** denotes 1% significance, ** 5%, and * 10%.
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for this possibility, I consider a specification that includes the employment levels in the

performance increment function as follows,

Vjlkt = β1 ln rjt−1 + β2 ln rjt−1 ln (empjlkt−1) + β6 ln (empjlkt−1) . (18)

Accounting for the direct effect of local manufacturing employment does not change

the conclusions from my baseline estimation. The local manufacturing employment

has no direct impact on the plant performance, and it only affects the plant perfor-

mance through interacting with the R&D investment.

4 A Model of Innovation and Production

Motivated by the facts presented in section 2 and the empirical evidence on the positive

spillovers from local manufacturing to innovation in section 3, I extend the trade and

multi-region production model developed by Arkolakis et al. (2018) with two key modi-

fications: (i) allowing firms to increase productivity through R&D; and (ii) incorporating

the spillovers from local manufacturing to innovation.

4.1 Setup

Consider an economy with n = 1 · · ·N regions. There are L̄n workers in region n. Work-

ers with CES preferences consume a continuum of goods indexed by ω ∈ Ω:

Un =

(∫
ω∈Ω

q(ω)
σ−1
σ dω

) σ
σ−1

. (19)

There are two activities in the economy: innovation and production. Workers pos-

sess heterogeneous abilities in these activities. Some are good at production while oth-

ers are good at research. Their abilities in these two activities are characterized by

the efficiency units of labor with which they are endowed, E = (Ee, Ep). Ee denotes

the endowment of efficiency units of labor which can be supplied to innovation activi-

ties, and Ep denotes the endowment that can be supplied to production. Assume that

Ee = ue/Γ (1− 1/κ) and Ep = up/Γ (1− 1/κ), with ue and up drawn independently from

the distribution F (u) = exp [−u−κ], where κ > 1 and Γ (·) is the Gamma function.

Workers are immobile across different regions but mobile across innovation and pro-
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Table 4: GMM Estimates: Robustness

Continuous R&D Discrete R&D

(a) (b) (c) (d)

βk Log(capital) -0.4085∗∗∗ -0.4087∗∗∗ -0.4081∗∗∗ -0.4083∗∗∗

-0.0043 -0.0042 -0.0042 -0.0042

α1 Performancet−1 0.9115∗∗∗ 0.9123∗∗∗ 0.9110∗∗∗ 0.9117∗∗∗

-0.0114 -0.0114 -0.0113 -0.0113

α2 Performance2
t−1 0.0977∗∗∗ 0.0985∗∗∗ 0.0977∗∗∗ 0.0985∗∗∗

-0.0084 -0.0084 -0.0084 -0.0084

β1 Log(R&Dt−1) -0.0002 -0.0002 -0.0055 -0.006

-0.0006 -0.0006 -0.0052 -0.0051

β2 Log(R&Dt−1 )× Log(Empt−1) 0.0003∗∗∗ 0.0002∗∗ 0.0034∗∗∗ 0.0022∗∗∗

-0.0001 -0.0001 -0.0008 -0.0003

β5 Log(R&Dt−1 )× Log(RDempt−1) -0.0001 -0.0008

-0.0001 -0.0007

β6 Log(Empt−1) 0.0001 0.0004

-0.0002 -0.0003

β3 Constant 0.2889 0.3574 0.2296 0.2791

-0.2339 -0.2436 -0.2349 -0.2303

β4 Log(Dist.) -0.0793∗∗ -0.0872∗∗ -0.0644∗ -0.0684∗

-0.036 -0.038 -0.036 -0.0357

Overidentification Test (p value) 0.32 0.25 0.35 0.34

Observations 106,000 106,000 106,000 106,000

Industry Effects Yes Yes Yes Yes

Notes: This table reports GMM estimates corresponding to variants of Equation (14). Columns (a) and (c)
allow for spillovers from the local R&D activities to innovation. Columns (b) and (d) incorporate the direct
impact of local manufacturing employment on plant performance. Robust standard errors in parentheses
are clustered by county. Each specification reports the p-value for the overidentification restrictions test
(Hansen, 1982). R&D is measured as log(1+R&D) in columns (a) and (b), and a binary variable in columns
(c) and (d). *** denotes 1% significance, ** 5%, and * 10%.
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duction activities within each region.16 Wage per efficiency unit of innovation labor is

wen, and per efficiency unit of production labor is wpn. Workers will choose to work in

innovation activities if Eewen ≥ Epwpn, otherwise they will choose to work in production.

Given the wages wen and wpn, the supply of labor units to innovation and production ac-

tivities in region i are given by

Len = L̄n

[
1 +

(
wen
wpn

)−κ]1/κ−1

, (20)

and

Lpn = L̄n

[
1 +

(
wpn
wen

)−κ]1/κ−1

. (21)

Labor units supplied to innovation and production activities depend on the relative

wage wen
wpn

. With a finite κ, workers are heterogeneous in their productivity across ac-

tivities. The change of relative wage will lead to the expansion of one activity and the

contraction of the other. With κ → ∞, workers are homogeneous and perfectly mobile

across activities. There is no mobility across activities when κ→ 1.

4.2 The R&D Firm’s Problem

A firm born in region i only conducts R&D in its birth region.17 New technologies cre-

ated through R&D can be used in multi-region production (MP). MP occurs when the

technology from region i is used for production in region l. The firm’s productivity in re-

gion l is denoted as zl. Engaging in MP incurs a productivity loss γil due to the transfer of

technology. γil is an iceberg cost, with γil > 1 and γll = 1. There is a fixed cost Fn in units

of labor and an iceberg trade cost τln when selling a variety produced in l to n. Labor

is the only input of production, and therefore the marginal cost of a variety from i pro-

duced in region l to serve market n is ciln =
γilw

p
l τln
zl

. Given the CES preference, firms will

set the prices piln = σ̃ciln, where σ̃ = σ
σ−1

is the markup over the marginal cost. To enter

16There is limited empirical evidence of geographic mobility. Caliendo et al. (2015) find that only 2%
of the U.S. population moves across states in a year. Autor et al. (2013) find that trade shocks induced
only small population shifts across regions in the US. In the appendix, I consider an extension of the
benchmark model where workers can move across regions.

17For the origin-production-market triplet below, I use index i to denote the source of idea, index l to
denote the location of production and index n to denote the product market.
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market n, the variable profits earned in market n should be able to cover the fixed cost

wnFn, and thus the unit cost of production needs to be lower than c∗n =
(
σwpnFn
Xn

)1/(1−σ)
Pn
σ̃

,

where Xn is the total expenditure in region n and Pn =
(∫

ω∈Ω
p1−σ
n dω

)1/(1−σ)
is the aggre-

gate price index in region n.

4.2.1 Innovation

An R&D firm at region l can invest f̄i efficiency units of innovation labor to come up

with a new variety (product innovation).18 The new variety can be produced in regions

different from where it is created. Assume that the vector of productivity at each poten-

tial production site z = (z1, z2, . . . , zN) is randomly drawn from the multivariate Pareto

distribution

Gi (z1, . . . , zN) = 1−

(
N∑
l=1

[(
T̄ ei v

)
T pl z

−θ
l

] 1
1−ρ

)1−ρ

(22)

with support zl ≥
∑

l

[
T

1/(1−ρ)
il

] 1−ρ
θ

, θ > max (1, σ − 1) and ρ ∈ [0, 1).19 The shape param-

eter θ controls the heterogeneity across realizations of different productivity vectors,

and the correlation parameter ρ controls the correlation of the elements within the pro-

ductivity vector.

The scale parameter
(
T̄ ei v

)
T pl determines the average productivity of varieties cre-

ated in i and produced in l. T pl is the productivity in production at region l.
(
T̄ ei v

)
deter-

mines the quality of ideas created in region i, and can be thought of as the productivity

in innovation. T̄ ei is the fundamental productivity in innovation at location i. The R&D

firm can also invest in R&D to increase productivity, and thus lower the marginal cost of

production (process innovation). v is the level of process innovation chosen by the firm.

To achieve v level of process innovation, the R&D firm incurs a cost of vβi (βi > 1)

efficiency units of innovation labor. The region-specific parameter βi reflects the capa-

bility of a region in fostering innovation. A lower βi indicates that region i is better at

fostering innovation. In this case, the marginal cost of process innovation will be lower

18To line up with my empirical model, innovation site within an R&D firm is predetermined.
19See Arkolakis et al. (2017) for detail information of the distribution properties and boundary condi-

tions.
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and the returns to R&D are higher. In section 3, I find that returns to R&D are higher

when innovation plants are located in a region with more manufacturing employment.

In other words, regions with a higher employment in production are better at fostering

innovation. Thus, I impose the following assumption on the region-specific parameter

βi.

Assumption: βi = 1

g(Lpi )
is an decreasing function in Lpi .

Regions with a higher level of employment in production are better at fostering in-

novation. In this case, the cost of process innovation v
1

g(Lpi ) is lower. Denote T ei = T̄ ei v as

the post process innovation productivity. With a higher T ei , the new varieties created in

region i will have higher productivity at all potential production sites.

4.2.2 Production

The R&D firm from region i faces a tradeoff between market proximity and production

capability when choosing where to produce for market n. It can either locate in a region

closer to the market (a smaller τln) or in a region with lower production cost (a lower
wpl γil
zl

). Given the multivariate Pareto distribution of the productivity vector, the proba-

bility that a variety created from i serving market n through region l is

ψiln ≡ Pr (argminlCiln = l|minlCiln ≤ c∗n) =

(
T pl (γilw

p
l τln)−θ

)1/(1−ρ)

∑
m

(
T pm (γimw

p
mτmn)−θ

)1/(1−ρ)
. (23)

The probability depends on the production capacities of region l relative to other

regions. The numerator represents a region’s production capacity, which depends on

the region’s productivity in production T pl , the proximity to technology γil and market

τln, and the wage of production labor wpl . The denominator in equation is the sum of all

potential production sites’ capacities, and can be thought of as the access to production

for firms from region i.

Given the access to production, the probability of R&D firm from i serving market n

at a cost lower than c, for c ≤ c∗n, is
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Pr (minlCiln ≤ c) = T ei

(∑
m

T pm (γimw
p
mτmn)−θ

)1/(1−ρ)
1−ρ

θcθ−1. (24)

Denote Φin(v) =
(
T̄ ei v

) [(∑
m T

p
m (γimw

p
mτmn)−θ

)1/(1−ρ)
]1−ρ

as the market potential of

firms from region i in serving market n. With higher productivity in innovation and

greater access to production, firms from i gain a higher market potential in n.

4.2.3 Optimal Level of Process Innovation

The R&D firms choose the optimal level of process innovation to maximize their prof-

its. Given the probability of serving market n by firms from i in Equation 24 and the

probability of producing in region l in Equation (23), the expected sales of a firm from i

serving market n through region l can be written as

E(xiln) = φilnΦin(v)Xnσ̃
1−σP σ−1

n

∫ c∗n

0

θcθ−σdc, (25)

and the total expected profits net of innovation costs for a firm innovating in i and con-

ducting v level of process innovation is

E [πi(v)] =
σ − 1

θ − σ + 1

∑
n

Φin(v)

(
XnP

σ−1
n

wpnFn

σ

σ̃1−σ

) θ
σ−1

wpnFn − wei f̄i − wei vβ. (26)

The first-order condition for the choice of the optimal level of process innovation

and the zero expected profit condition due to the free entry yields v =
(

1
1−g(Lpi )

f̄i

)g(Lpi )

.

The optimal level of process innovation is an increasing function in its production labor

Lpi . R&D firms locating in regions with higher employment in production will choose a

higher level of process innovation.

4.3 Aggregation

The R&D firm from region i will spend fi efficiency units of labor on innovation, which

is the sum of its expenditures on product innovation f̄i and process innovation 1

g(Lpi )
f̄i.

In region i, Lei efficiency units of labor are allocated to innovation and the measure of

varieties created in region i is Mi =
Lei
fi

. The total sales of varieties created in i serving
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the market n through region l can be written as

Xiln = Mixiln = φiln
MiΦin∑
kMkΦkn

Xn. (27)

Given the aggregate trilateral technology and trade flows Xiln, the total value of va-

rieties produced in region l is denoted as Yl ≡
∑

i,nXiln and the total expenditure in

region n is Xn ≡
∑

i,lXiln. Xiln can be used to construct three sets of aggregate bilateral

shares:

the expenditure shares

λEin ≡
∑

lXiln

Xn

=
MiΦin∑
kMkΦkn

, (28)

the trade shares

λTln ≡
∑

iXiln

Xn

=
∑
i

φilnλ
E
in, (29)

and the MP shares

λMil ≡
∑

nXiln

Yl
=

∑
n φilnλ

E
inXn

Yl
. (30)

4.4 Equilibrium

Given the measure of varieties created in region i and the profits earned by the R&D

firm in Equation (26), the total profits earned by firms from region i can be written as

Πi = Miπi = η
∑

n λ
E
inXn − weiLei , where η = σ−1

θσ
. Zero profit condition implies that labor

market clearing condition for innovation workers can be written as follows,

∑
n

λEinXn = weiL
e
i . (31)

The labor demand for production in region l equals the total output Yl minus the

profits associated with the output Yl
σ

, which gives
∑
n λ

T
lnXn
σ̃

. The labor demand for serving

the market (entry) is (1− η− 1
σ̃
)Xl, which depends on the total consumption in region l.

The labor marketing clearing condition for innovation workers can be written as follows,∑
n λ

T
lnXn

σ̃
+ (1− η − 1

σ̃
)Xl = wpl L

p
l . (32)

Following Dekle et al. (2007), this model allows for aggregate trade and MP imbal-

29



ances via exogenous cross region transfer ∆i with
∑

i ∆i = 0. The budget balance con-

dition can then be written as:

wpiL
p
i + weiL

e
i + ∆i = Xi. (33)

Equations (31) and (32) can be written in terms of wages by substituting Lei and Lpi

using Equations (20) and (21), and Xi using Equation (33). Equilibrium wages can be

obtained by solving a system of 2N equations.

4.5 Calibration

I take the model to the data in year 2012, and restrict my analysis to 48 states in the

U.S. and the rest of the world (ROW) for which I have good data for trade, output and

multi-region production.20 The parameters to be calibrated in the model are the multi-

variate Pareto distribution parametrs ρ and θ; the Frechet distribution parameter κ; the

elasticity of substitution σ; the entry cost of innovation fi; the parameters that deter-

mine bilateral trade and MP cost τln and γil; the productivity parameters T ei and T pl ; and

regions’ capability in fostering innovation g(Lpi ).

To calibrate these parameters, I construct data on the bilateral trade and MP flows,

the number of varieties in each region and the endowment of equipped labor in each

region. For domestic trade, I aggregate the firm-level manufacturing trade flow data

from the Commodity Flow Survey (CFS) to the state level to get the bilateral trade flows

between the 48 states. I get the trade flows between each state and the ROW from Longi-

tudinal Firm Trade Transaction Database (LFTTD). For the trade flows within the ROW

Xrow,row, I take it from the World Input-Output Database. With these data, I construct

the 49× 49 matrix of trade shares λTln, a vector of aggregate expenditure on manufactur-

ing goods Xn =
∑

lXln, and a vector of aggregate output in manufacturing Yl =
∑

nXln.

The empirical counterpart of bilateral MP flows from region i to region l is defined

as the output in region l that is using the technology from region i. To construct the

domestic MP flows, I link the BRDIS with Census of Manufactures (CMF). The data from

the BRDIS allow me to identify the origin state of technology within a firm and the data

20Alaska, Hawaii and D.C. are excluded from my data sample.
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from the CMF provide me with the information of output. I measure the outward MP

flows from the U.S. to the ROW as the output of the R&D firms’ foreign affiliates. To

measure the inward MP flows from the ROW to each state, I link the Survey of Business

Owners (SBO) with CMF to identify the foreign firms’ operations in each state. I take the

MP flows from ROW to ROW from Arkolakis et al. (2018). In this way, I obtain the 49× 49

matrix of trade shares λMil .

The number of varieties created in each state and the ROWMi are measured by link-

ing the BRDIS (or SBO) with CMF. The data from the BRDIS and SBO allow me to identify

the origin of technology for firms’ production, and the data from the CMF provide in-

formation on the number of products.

The aggregate labor endowments for the U.S. and the ROW are measured by using

total equipped labor data from Penn World Table (PWT), multiplied by the share of em-

ployment in manufacturing sector from the UNIDO. The equipped labor in each state

is then constructed by multiplying the share of employment in each state by the total

equipped labor measured from the PWT.

4.5.1 Calibrated Parameters and Targeted Moments

Table 5 summarizes the calibrated parameters and the targeted moments in the data. I

take the multi-variable Pareto shape parameter θ = 4.5, correlation parameter ρ = 5.5,

and the elasticity of substitution from σ = 4 from Arkolakis et al. (2018). I set Frechet dis-

tribution parameter κ = 3 following Hsieh et al. (2013) and Lagakos and Waugh (2013).

The rest of the parameters are calibrated following Arkolakis et al. (2018). First, I im-

plement an extended version of Head and Ries (2001) approach to estimate the bilateral

trade and MP costs. Given the data on trade, MP shares and the total consumption Xn,

the model determines all the trilateral trade flows Xiln.21 Assume that both the trade

costs and MP costs are symmetric, I compute the matrices τ̂ln =
(√

XinnXill
XilnXinl

) 1−ρ
θ

and

γ̂il =
(√

XiinXlln
XilnXlin

) 1−ρ
θ

.

Given the estimated matrices of trade and MP cost, I set parameters T ei , T pi and fi to

match MP deficit
∑

l λ
M
il Yl − Yi, the total output Yi and the number of varieties respec-

tively.

21See appendix for the proofs.
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Table 5: Calibrated Parameters and Data Targets

ParametersValue Description Target/Source

σ 4 elasticity of substitution Arkolakis et al. (2018)

κ 3 Frechet shape parameter Lagakos and Waugh (2013); Hsieh et al. (2013)

θ 4.5 MVP shape parameter Arkolakis et al. (2018)

ρ 0.55 MVP correlation parameter Arkolakis et al. (2018)

f̄ innovation entry cost number of varities

τln trade cost bilateral trade shares

γil MP cost bilateral MP shares

TPi productivity in production gross output

T ei productivity in innovation MP deficit

Notes: This table summarizes the calibrated parameters and the targeted moments in the data.

4.5.2 Mapping Revenue Equation to the Empirical Revenue Function

The region’s capability in fostering innovation g(Lpi ) is estimated by mapping the rev-

enue function from the theoretical model to the empirical model. Given the expected

sales of firm i serving the market n through l in Equation (25), the log expected revenue

of firms from i with innovation level v =
(
fi − f̄i

)g(Lpi )
choosing region l to serve all po-

tential markets can be written as22

ln (xil)−
1

1− ρ
ln
(
T pl w

−θ
l

)
− ln (Dil)− lnT ei +

θ

1− ρ
ln (γil) = g

(
LPi
)

ln
(
fi − f̄i

)
, (34)

where Dil =
∑

n

∑
l T

p
l (γilwpl τln)

−θ∑
kMkΦkn

(Xnτln) can be thought of as the aggregate demand for

the production plants using technologies from region i to serve the markets, and f̃i−fi =

1
1−g(Lpi )

fi is the R&D expenditure that firm i spends on process innovation.

The log revenue in the empirical model is a function of the aggregate market con-

22Firms from region i will choose the optimal level of process innovation v =
(

1
1−g(Lp

i )
f̄i

)g(Lp
i )

=(
fi − f̄i

)g(Lp
i ).
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ditions, the capital stock and the plant-specific performance, as in Equation (5). Plant-

specific performance evolves over time, and depends on its own investment in R&D, as

well as the transfer of technology from other R&D plants in the same firm. The perfor-

mance evolution function is general enough to cover different organization structures

of production and innovation within an R&D firm. For example, it allows more than one

innovation plant within an R&D firm to provide technology for the production plants.

The theoretical model is a simplification of what we can observe in the real data, as-

suming there is only one innovation plant within an R&D firm. To map the log revenue

function to the empirical model, I simplify the performance evolution function by con-

sidering the case that there is only one innovation plant within an R&D firm, and I look

at the long-run impact of innovation on plant performance.23

The log revenue function from the empirical model can then be written as

τ−1
jj′

(
lnRevj − djk −

σ − 1

1− α1

α0

)
=

σ − 1

1− α1

(
β1 ln rj′ + β2 ln rj′ ln

(
empj′

l′k

))
, (35)

where plant j is the technology-receiving plant and plant j′ is the innovation plant.24

Comparing the revenue function from the theoretical model in Equation (34) with

that from the empirical model in Equation (35), the left hand side of both equations

gives the production plants’ revenue after controlling for region-specific characteris-

tics in production, the aggregate demand, the fundamental productivity and the loss

of technology from the transferring. The region-specific productivity in production is

captured by the term ln
(
T pl w

−θ
l

)
in the theoretical model, and the empirical counter-

part is djk . The aggregate demand depends on Dil, which is captured by djk in equation

35. Both equations relate revenue to the long-run predicted productivity. T̄ ei determines

the fundamental productivity in innovation in the model and σ−1
1−α1

α0 captures the long-

run effects of innovation on productivity. The friction of technology transfer is captured

by γil theoretically and by τjj′ empirically.

The right hand sides of both equations relate the production plant’s revenue to the

investment in R&D. In the theoretical model, the plant’s revenue depends on the invest-

23The long run effect of R&D investment on plant performance is captured by α1 and α2. More than
90% of current period can be explained by its performance in the previous period. For simplification, I
only consider the first-order effects of R&D investment on plant long-run performance.

24I surpress the constant term γ0 = log( θ
θ−σ+1 ) in the equation.
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ment in R&D at the innovation plant, as well as the regions’ capacity in fostering inno-

vation. The capacity is an increasing function of the local manufacturing employment,

denoted as g(Lpi ). Empirically, the plant’s revenue depends on the investment in R&D
σ−1
1−α1

(β1 ln rj) and the spillovers from the local manufacturing σ−1
1−α1

(
β2 ln rj′ ln

(
empj′

l′k

))
.

Given that the estimate of β1 in Equation (7) is not significantly different from zero, I will

mainly focus on the spillover effects from the local manufacturing. Assume innovation

capacity g(Lpi ) = µ lnLpi , where µ captures the strength of the spillovers from the lo-

cal manufacturing to innovation. The spillover strength parameter takes the value µ =

σ̂−1
1−α̂1

β̂2, where the estimates are from Table 3 column (b). With α̂1 = 0.9125, β̂2 = 0.0002

and σ̂ = 2.9568, the strength parameter is estimated to be µ = 0.005.

The benchmark estimation in the empirical section also considers the case of no

spillovers from the local manufacturing to innovation. In this case, the plant’s revenue

only depends on the innovation plant’s investment in R&D. To shut down the spillovers

from the local manufacturing in the model, I assume the local innovation capacity is a

constant and it equals g(·) = σ̂−1
1−α̂1

β̂1, where the estimates are taken from Table 3 column

(a). With α̂1 = 0.9088, β̂2 = 0.0014 and σ̂ = 2.9568, the constant local innovation capac-

ity is estimated to be g(·) = 0.03. In the counterfactural exercises, I will compare the

changes of innovation efficiency in cases where there are spillovers to these cases where

there are no spillovers.

4.6 Counterfactural Exercises

The increase in U.S. imports from China has asymmetric impacts across regions. Autor

et al. (2013) shows that labor markets with greater exposure to the increase in import

competition from China experienced a larger decrease in manufacturing employment.

In this section, I will use the China import competition to quantify the effects of pro-

duction reallocation on the local innovation efficiency.

4.6.1 Identifying the Trade Shocks

Given that not all the observed changes in U.S. imports from China are the results of a

change in Chinese productivity, I replicate the procedure in Autor et al. (2013) to identify

the supply-driven components of Chinese imports. I compute the predicted changes in
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the U.S. imports from China a la Bartik. The predicted changes are the inner product

of the initial U.S. imports in each sector and the sectoral growth of Chinese imports in

eight other developed countries,25

∆IMPChina→US =
∑
k

IMP k
1997 × gkChina→OTH , (36)

where IMP k
1997 is the U.S. imports from China in 1997, gkChina→OTH is the growth of Chi-

nese imports in eight other developed countries in sector k, and ∆IMPChina→US is the

changes in imports during the period 1997-2012.

I model the rise of China as the productivity shocks to the ROW ∆T pROW , and use the

predicted changes in the U.S. imports from China to quantify the size of the productivity

shocks. I calibrate these shocks such that the simulated changes in aggregate expendi-

ture shares on goods from the ROW match the change in these expenditure shares that

is driven by the rise of China during 1997-2012.

4.6.2 The Impact of production reallocation on innovation

In this section, I will remove the China shock to see how that will affect the innovation

and production across all states.

Figure 3 plots the percentage changes in innovation and production labor for each

state when removing the import competition from China. In this case, each state will

have a larger employment in production but less employment in innovation. That is to

say, most states will be less specialized in innovation when comparing with the current

equilibrium. In another words, the rise of China leads to the decrease in production cost

in the ROW, which makes it possible for each state in U.S. to be more concentrated in

innovation and reallocate some of its productions to the ROW. Michigan experiences the

largest decline in manufacturing, followed by Massachusetts, Connecticut, and Texas

due to the rise of China.26

Figure 4 plots the percentage changes in innovation productivity against the changes

in production workers. When there are no trade shocks, states with a larger increase in

25The eight other developed countries are Australia, Denmark, Finland, Germany, Japan, New Zealand,
Spain, and Switzerland.

26Autor et al. (2016) also find that these states face highest exposure to trade shocks.
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Figure 3: Reallocation of Innovation and Production Labor
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Notes: This figure plots the percentage changes in innovation and production labor for each state when
removing the import competition from China.

production workers will also experience a more substantial growth in innovation effi-

ciency.

4.6.3 Spillovers versus no spillovers

I consider another counterfactual exercise by shutting down the spillovers from the lo-

cal manufacturing to innovation. For cases with and without spillovers from the local

manufacturing to innovation, I compute the changes in welfare, innovation productiv-

ity, and the number of varieties due to the exogenous trade shocks.

In the following, I will compare the difference in changes across the two scenarios.

In Figure 5, the y-axis in both subfigures plots the difference in welfare changes. The

x-axis in the left panel reports the difference in the innovation productivity. When there

are positive spillovers from the local manufacturing to innovation, the increase in the

production employment leads to an increase in innovation efficiency. With a higher

productivity in innovation, it obtains a higher welfare compared with the case of no
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Figure 4: The Impact of Production Labor Reallocation on Innovation Efficiency
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Notes: This figure plots the percentage changes in innovation productivity against the changes in pro-
duction workers when removing the import competition from China.

spillovers. The scatterplot of the left panel indicates that the increase in innovation pro-

ductivity due to the positive spillovers from the local manufacturing results in a higher

welfare. More than that, a higher productivity in innovation also leads to a larger invest-

ment in R&D. As a result, more workers will be allocated to innovation activities. The

increase in innovation labor further results in the increase in the number of varieties

being created, as plotted on the x-axis in the right panel of the Figure 5.

5 Conclusion

This paper finds evidence that production proximity is crucial for innovation efficiency.

I document two novel patterns on the spatial distribution of innovation and produc-

tion: (i) innovation activities are more agglomerated than production ones, and (ii) in-

novation and production activities are geographically concentrated. Motivated by the

stylized facts, I propose that local manufacturing can enhance innovation and develop

an empirical model to allow for the spillovers from the local manufacturing to innova-
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Figure 5: Difference in Welfare Changes
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(a) Productivity in innovation
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Notes: This figure compares the difference in welfare changes, innovation productivity, and the number
of varieties for cases with and without spillovers from local manufacturing to innovation. The y-axis in
both subfigures plots the difference in welfare changes. The x-axis in the left panel reports the difference
in the innovation productivity and in the right panel displays the difference in the number of varieties.

tion. In my empirical model, the increment in plant performance depends both on its

investment in R&D, and the interaction between R&D and local manufacturing workers.

I estimate the model by using a unique confidential plant-level panel data on innova-

tion and production from the U.S. Census Bureau. My estimates show that with more

manufacturing workers in the local area, the returns to R&D are higher. My empirical

finding is consistent with the idea that geographic proximity facilitates the transmission

of knowledge (Audretsch and Feldman, 2004). I extend Arkolakis et al. (2018) to incor-

porate the positive spillovers from production to innovation that I find in the empirical

study, calibrating it to 48 states in the U.S. and the ROW. I then evaluate the impact of

China trade shock on innovation efficiency through the new channel of local spillovers.

I find that states with a more significant decline in the manufacturing sector due to the

China shock experience a more substantial loss in innovation efficiency.
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