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1 Introduction

Since the work of David Ricardo, trade economists have considered relative productivity differences

between countries and sectors to be one of the main reasons for international trade. In the past

two decades, this insight has been reinforced with new quantitative models of trade that rely on

distributional representations of productivity differences across countries, sectors, and firms as the

ones by Eaton and Kortum (2002) and Melitz (2003). In view of this, it is surprising that there

is relatively little evidence regarding the quantitative importance of technological differences in

productivity distributions for explaining the patterns of international trade.1 The present work

aims at filling this gap.

In this paper, we adopt a micro-to-macro approach to evaluate the role of technology for trade.2

We start with firm-level balance-sheet data for 15 countries and 13 manufacturing sectors and esti-

mate firm-level productivity parameters. We then develop a method of combining such estimates to

arrive at representative country-sector-specific empirical productivity distributions that are robust

to possible selection biases due to an underrepresentation of small firms in the data. We feed these

distributions into multi-sector versions of two canonical models of international trade based on per-

fect and monopolistic competition as in Eaton and Kortum (2002) and Melitz (2003), respectively,

and develop novel quantitative algorithms to accommodate the calibration and solution of these

models under arbitrary nonparametric productivity distributions. Finally, we use calibrated model

versions to assess the role of technology for international trade in two dimensions. On the one hand,

conditional on other fundamentals, distributional productivity differences constitute an important

determinant of the level of international trade flows across countries. We refer to this dimension

as the first-order effect of technology on trade. On the other hand, productivity distributions also

determine how changes in economic fundamentals such as reductions in variable trade costs drive

changes in exports and imports, which we refer to as the gradient effect of technology on trade.

With this agenda, we contribute to the literature in four ways. First, to the best of our knowledge,

this is the first paper that studies how productivity differences shape trade through the lens of a

micro-to-macro approach that does not rely on specific parametric assumptions about productivity

distributions. We find that, on average, the distributional differences across countries within each

sector, which we refer to as modified absolute advantage, explain 15% and 21% of the total variation

in trade flows in the Eaton-Kortum and Melitz model, respectively. On the other hand, within-

country sectoral distributional differences, referred to as modified comparative advantage, on average

explain 39% and 47% of the total variation in the Eaton-Kortum and Melitz model, respectively. For

many country pairs and sectors, modified absolute and modified comparative advantage constitute

1Prior to the heterogeneous firms literature, Leamer (1984) and Harrigan (1997) quantified the importance of
productivity for trade at the sectoral and country levels. Our focus, however, is different as we highlight the role of
production and supply by heterogeneous firms as in Eaton and Kortum (2002) and Melitz (2003).

2Throughout this paper, we examine differences in technology as differences in total factor productivity (see
Eaton and Kortum, 2002). There are, however, further dimensions of technology that might differ across countries
and impact trade, like for instance production function parameters (see Boehm and Oberfield, 2020). We focus on
the former, while keeping the latter fixed.
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the single most important driver of export and import flows. In a next step, we examine the second

dimension of the relationship between technology and trade, the gradient effect, and find that using

empirical productivity distributions leads to substantially stronger responses of both international

trade and welfare to changes in fundamentals such as trade costs. We also find that under equivalent

reductions in variable trade costs, the marginal responses are decreasing in absolute terms across

trade quantiles and that they are largely heterogeneous between the Eaton-Kortum and Melitz

models. We demonstrate the relevance of this pattern for the gravity equation and macro-based

model isomorphism with respect to changes in trade costs between the Eaton-Kortum and Melitz

models and confirm the predictions of the two models under empirical productivity distributions

in the data.

Second, our methodological contributions include developing a method of formulating representative

country-sector productivity distributions that account for a possibility of non-randomly missing

observations of smaller firms, which may pose a problem for many data sets when considering

a larger cross section of countries and sectors. We combine firm-level data with coarser sectoral

statistics on the true number of all firms across employment-size classes per country and sector in

an inverse-probability-weighted estimation procedure that corrects for a possible associated firm-

size-related selection bias.3 The proposed methodology reduces the selection bias by 98.7% in a

Monte Carlo simulation exercise which we present. Moreover, we develop numerical calibration and

solution methods that allow solving large-scale models with heterogeneous firms under arbitrary

productivity distributions.

Third, we contrast our approach with macro-based approaches that infer productivity differences

from sectoral or aggregate data on trade flows. Such approaches always parameterize productivity

distributions under a single few-parameters family such as the Fréchet or Pareto distributions. We

show that such parameterizations overly simplify and vastly understate the extent of empirical

productivity differences across countries, sectors, and their impact in shaping patterns of trade.

We propose a statistical test based on the Kolmogovor-Smirnov statistic to show that typical

parameterizations do not only lead to a poor approximation of the empirical distributions but,

more importantly, that it is statistically impossible to assign the empirical distributions to a single

few-parameter family. For example, we estimate that at the 10%-significance level only 12% and 5%

of 195 country-sector productivity distributions can be placed under the umbrellas of the Fréchet

and Pareto distributions, respectively

This paper is related to several strands of the literature. We relate to the pre-(heterogeneous-

)firms literature on the role of total factor productivity differences across countries as a source of

comparative advantage and driver of international trade including Leamer (1984) and Harrigan

(1997, 1999). Relative to these papers, we evaluate the role of technological differences through all

moments of firm-level productivity distributions. Doing so accounts for micro-to-macro mechanisms

3The data on the number of firms across five different employment sizes are available on the sectoral level for a
large number of countries via the OECD Structural and Demographic Business Statistics.
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that are absent in frameworks where productivity is a country-sector parameter rather than a firm-

level characteristic. We also relate to Chor (2010), Costinot et al. (2012), Levchenko and Zhang

(2014), Lind and Ramondo (2018) that examine Ricardian productivity differences in the Eaton-

Kortum framework and to di Giovanni and Levchenko (2013), Melitz and Redding (2014), Hsieh

and Ossa (2016) who examine how productivity differences affect trade and welfare in the Melitz

framework. In contrast to the latter work, we do not rely on specific parametric assumptions to

model technology distributions but build on their empirical form.

We contribute to the recent advancements in the from-micro-to-macro quantitative literature that

employs firm-level data to infer features of the underlying firm heterogeneity and uses this informa-

tion together with aggregate data to inform counterfactual analyses at the macro level (Hsieh and

Klenow, 2009; di Giovanni et al., 2011; Eaton et al., 2011; Corcos et al., 2012; Eaton et al., 2013;

di Giovanni and Levchenko, 2013; Arkolakis, 2016). We highlight the role of micro-based produc-

tivity distributions for correctly predicting aggregate responses. We show that using micro-data

is essential for representing aggregate productivity differences across countries and sectors and for

quantifying their effects on macro outcomes such as trade flows and real income.

Finally, the paper also contributes to the debate about which parametric families should be used

to model productivity distributions to match certain data moments (Head et al., 2014; Freund and

Pierola, 2015; Bas et al., 2017; Nigai, 2017; Fernandes et al., 2018). However, instead of trying

to find a parametric family that would fit data on certain countries or sectors, we ask a funda-

mentally different question: can we statistically assign observed productivity distributions to any

single few-parameter family? To that end, we propose a series of statistical tests that rely on the

Kolmogorov-Smirnov statistic and show that neither of the seven most common fat-tailed distribu-

tions (including Fréchet, Pareto, and Log-normal) can subsume the empirical distributions under

its umbrella. Hence, there is little hope for successful parsimonious parameterizations of empir-

ical firm-productivity distributions. Moreover, we show that this is relevant both quantitatively

as well as qualitatively. Customary parameterizations tend to understate the role of productivity

differences for trade by constraining the dimensions in which technology can vary across countries,

sectors, and firms which has important implications for the level and direction of trade flows, but

also for marginal responses of trade flows to changes in trade costs, for the isomorphism between

models in predicting the welfare gains from trade, and for gravity-type parameter estimation.

The remainder of the paper is organized as follows. In Section 2, we use a stylized two-country model

to illustrate and develop intuition on why and how different moments of productivity distributions

govern trade outcomes. In Section 3, we describe the procedure for estimating representative

country-sector-specific productivity distributions from firm-level data. We examine dimensions in

which the estimated empirical distributions differ across countries and sectors and whether they can

be placed under the umbrella of a single few-parameter distribution family in Section 4. In Section

5, we the describe two multi-sector and multi-country general equilibrium models of trade based on

perfect and monopolistic competition to be used in the subsequent counterfactual analysis. Section
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6 describes the calibration procedure. We conduct a series of counterfactual experiments that

quantify the role of technology for international trade and analyze micro-to-macro implications of

using empirical productivity distributions in Section 7. In Section 8, we provide empirical support

for the theoretical patterns uncovered in the previous sections. The last section offers a brief

conclusion.

2 An illustration: The two country case

For illustration purposes, in this section we use simple two-country single-sector versions of the

models of Eaton and Kortum (2002) and Melitz (2003) to provide intuition on how different mo-

ments of productivity distributions shape patterns of international trade. For that, we examine

how both the first-order and the gradient effect matter for international trade in a stylized setting.

We start with the first-order effect that determines how trade is shaped by differences in produc-

tivity across countries. We provide details on the multi-country and multi-sector versions of the

two models used in the quantitative analysis in Section 5. However, here it suffices to use simpler,

highly stylized model versions. Further details on the parameterization of the two-country model

can be found in the Appendix.

Figure 1: Dimensions of productivity differences
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Consider a world of two symmetric countries i and j and let Fi(φ) and Fj(φ) denote the cumulative

distribution functions (CDFs) of firms’ productivity φ in i and j, respectively. Though in reality

there are infinitely many ways in which Fi(φ) and Fj(φ) may vary, it is instructive to discipline

such differences and consider three particular dimensions of CDFs: location, scale, and shape.

We illustrate how CDFs vary under changing location, scale, and shape in the left, middle, and

right panels of Figure 1, respectively. In the overwhelming majority of earlier work, productivity

distributions are allowed to differ across countries only in one of the three dimensions that we

consider in Figure 1.4 As we will show in Section 4, empirically there are many dimensions of

4This includes using the Fréchet distribution in different versions of the Eaton-Kortum model and the Pareto
distribution in different versions of the Melitz model. In these two distributions, only scale parameters are allowed
to vary across countries (within sectors) subject to a common shape parameter. Several papers employ alternative
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heterogeneity in productivity distributions across countries and sectors that extend even beyond

the three dimensions we consider in this section.

The main purpose here is to provide intuition and look at qualitative differences across productivity

distributions and models and (some of) their economic consequences. We start with illustrating

how location, scale, and shape alone govern patterns of international trade flows. At the outset,

country i and country j are completely symmetric in all economic primitives. The productivity

distributions are such that Fi(φ) = Fj(φ) and are characterized by {Location1, Scale1, Shape1} as

in Figure 1. We then change one dimension of Fj(φ) at a time by varying its location, scale, and

shape, respectively, and illustrate how international trade flows between i and j respond. In this

regard, we examine two trade outcomes – the import share of j from i, λij , and the import share

of i from j, λji – in both the Eaton-Kortum and Melitz frameworks.

Figure 2: Dimensions of productivity differences and their impact on imports and
exports in two canonical models of international trade
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We report the results in Figure 2. In the left panel, we illustrate how λij and λji respond to a

rightward shift of the entire CDF of j, Fj(φ). The intuition behind this shift is that all potential

producers in j become more productive. This means that in both the Eaton-Kortum and the Melitz

model exports of j to i will increase in terms of i’s expenditures, whereas imports of j from i will

decrease in terms of j’s expenditures, which is confirmed in the left panel.

In the middle panel, we change the Fj(φ) by changing its scale as in Figure 1. As the density around

the mode in Fj(φ) is becoming more pronounced, we see qualitative differences in the implications

between the Eaton-Kortum and Melitz models. While in the Eaton-Kortum model increasing the

scale of the productivity distribution leads to reductions in both λij and λji, in the Melitz model

λij increases and λji decreases. The intuition behind these results is as follows. In relative terms,

as Fj(φ) is becoming more centered, the differences between Fi(φ) and Fj(φ) become pronounced in

both the left and right tails. Subject to positive international trade costs, this means that the mass

of firms in j that are relatively more productive than in i in the right tail is shrinking but at the

same time in the left tail the reverse is true. This simultaneous change leads to reductions in both

parametric distributions (Bas et al., 2017; Nigai, 2017; Fernandes et al., 2018). However, they assume that the
distributions in all countries follow the same parametric family.
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λij and λji in the Eaton-Kortum model. On the other hand, in the Melitz model, the moments of

the distribution in the vicinity of the benchmark exporting cutoff play a relatively more important

role due to selection effects. In this example – akin to typical data – this cutoff productivity is

located in the right tail of the distribution (recall that relatively few and above-average productive

firms export to a particular market). As the right tail becomes relatively more pronounced in i, λij

is increasing and λji is decreasing. While we are well aware of the fact that the exact qualitative

and quantitative deviations of the Melitz and Eaton-Kortum models in this illustration depend on

the choice of parameters in this example, it is interesting to see that the aggregate implications of

the two models – often considered to be isomorphic in the literature – can differ even in a very

simplistic setting.

In the right panel of Figure 2, we plot changes in trade shares that exclusively result from changing

the shape of the productivity distribution of j as in Figure 1. This change effectively shifts the

weight from relatively more productive firms in the right tail of the distribution to relatively less

productive ones in the left tail. In line with the intuition, this leads to a reduction in λji and an

increase in λij in both the Eaton-Kortum and Melitz models.

The results in the three panels suggest that every dimension of heterogeneity in productivity distri-

butions has potentially important implications for shaping international trade flows. Making any

parametric assumptions a priori reduces the dimensionality of such heterogeneity. Quantifications

of the role of technology for international trade, when they rely on stylized parametric representa-

tions of productivity distributions, run at risk of being biased, and the bias depends on whether

one relies on an Eaton-Kortum-type or a Melitz-type model. We tackle this challenge by using

empirical productivity distributions based on firm-level data.

In order to shed light on the second dimension of the interplay between technology and trade, we

illustrate how different productivity distributions in the outset impact the trade-creation potential

of trade-cost reductions. For that, we return to the outset of two symmetric countries with the

same CDFs, Fi(φ) = Fj(φ). Now we vary location, scale, and shape of the two distributions while

keeping them symmetric and show the marginal effect of a 20% decrease in international trade

costs on trade shares in Figure 3. Because countries are symmetric in every regard in the outset,

for brevity we report changes in λij only.

In the left panel of Figure 3, we show how the response of trade shares depends on the location

of the productivity distributions. As illustrated, the marginal effect is largely independent of the

location of the two distributions. A homogenous response as here is akin to the setting typically

considered in the literature. In the middle panel, we illustrate how the reduction in trade costs

would affect international trade shares under different scales of the productivity distributions. Both

models suggest that the responses are generally larger when using Scale2 and Scale3 relative to

Scale1. This is intuitive because Scale2 and Scale3 increase the mass of firms in the center of the

distributions such that a reduction in trade costs leads to a relatively larger mass of new exporters

in the considered experiment. The same intuition is confirmed in the right panel of Figure 3, where
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we report how the shape of the distributions affects the magnitude of the marginal effects of trade

liberalization. Changing Shape1 to Shape2 and Shape3 increases the mass of firms in the left tail

and reduces it in the right tail. Hence, a marginal reduction in trade costs would have a relatively

lower number of new exporters, which leads to a less pronounced response. The intuition that the

mass of firms in the neighbourhood of equilibrium quantities is decisive for the size of the gradient

effect of technology on trade remains key in the more sophisticated and fully calibrated model in

Section 7. This concept is also key to understanding heterogeneous responses of trade flows to

trade cost changes observed in data.

Figure 3: Dimensions of productivity differences and their impact on responses of
trade to changes in trade costs in two canonical models of international trade
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Though the results presented in Figures 2 and 3 rely on simple two-country versions of the Eaton-

Kortum and Melitz models, they illustrate that differences in productivity distributions across

countries have three important effects on trade flows. First, such differences shape trade flows

directly. Second, they affect how differences in other economic fundamentals such as trade costs

influence patterns of international trade. Third, while models based upon Eaton and Kortum (2002)

and Melitz (2003) can be calibrated and matched using the very same underlying data, marginal

changes in fundamentals can have substantially different implications both quantitatively as well as

qualitatively in these two models. The results also indicate that evaluating this encompassing role

of technology quantitatively based on parametric assumptions about productivity distributions is

dangerous, as such assumptions a priori constrain the dimensions and degrees in which technology

can differ across countries, sectors, and firms. Hence, a quantification of the role of technology

for trade requires using unconstrained empirical firm-level distributions. In the next section, we

propose and describe a procedure which can obtain representative firm distributions for several

economies.
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3 Estimating representative country-sector productivity distribu-

tions

3.1 Empirical strategy to estimate firm-level productivities

In this section, we describe the estimation of productivity distributions. The estimation of firm-

level productivity produces estimates of φ that will constitute the input for the nonparametric

estimation of country-sector-level productivity distributions. In estimating firm-level productivity

we closely follow the approach advanced by Ackerberg et al. (2015) and de Loecker and Warzynski

(2012).

Since we make use of the time dimension for identifying firm-level productivity, which we explain

in detail in what follows, let us write the production function of a firm f using a time index t and,

for the ease of exposition, let us suppress country and sector indices. Assuming a fixed proportion

of materials mft is used to produce a unit of output, we can specify the production function in

terms of value added qft as a function of physical labor input lft and capital input kft which is

scaled by total-factor productivity φft:

qft = φft f (ln(lft), ln(kft), ) . (1)

As we do not observe physical units, we consider deflated value added ln(q̃ft) = ln(qft) + εft to be

a valid proxy thereof, as is customary in the firm-level productivity-estimation literature.5 Further

specifying production to be Cobb-Douglas and using εft to denote a disturbance term that captures

any measurement error of the left-hand-side variable, the empirical counterpart of the production

function is given by:

ln(qft) = ln(φft) + βl ln(lft) + βk ln(kft) + εft. (2)

In order to recover unobserved productivity φft, the production-function parameters have to be

consistently estimated. Since unobserved productivity is potentially correlated with input choices,

we rely on the so-called proxy method of productivity estimation (Olley and Pakes, 1996; Levinsohn

and Petrin, 2003; Ackerberg et al., 2015). In this paper, we rely on the material inputs to proxy for

unobserved productivity shocks. Specifically, we assume that material input choice can be described

as:

ln(mft) = mt (ln(lft), ln(kft), ln(φft), zft) , (3)

where zft denotes additional variables that might affect optimal input demand. In our context we

control for such factors by 4-digit-sector-time fixed effects. This specification considers capital and

labor input to be state variables, which are determined prior to t and affect optimal intermediate-

5We deflate value added using sector-country-time-specific deflators (see, e.g., Amiti and Konings, 2007 and
de Loecker and Warzynski, 2012).
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input demand. Assuming monotonicity of (3) in productivity, one can specify productivity as the

inverse of this function:

ln(φft) = ht (ln(lft), ln(kft), ln(mft), zft) . (4)

The parameters of the production function are recovered in a two-step procedure. First, we run a

first-stage model that allows for all variables to enter in a flexible way without identifying specific

production-function parameters at this stage:

ln(qft) = νt (ln(lft), ln(kft), ln(mft), zft) + εft. (5)

With these estimates at hand, we can obtain expected added value as

ν̂t (ln(lft), ln(kft), ln(mft), zft) = ĥt (ln(lft), ln(kft), ln(mft), zft) + β̂l ln(lft) + β̂k ln(kft) and

ε̂ft. Assuming a first-order Markov process for the evolution of productivity allows us to specify

the following:

ln(φft) = gt(lnφft−1) + ξft, (6)

where we can identify all production-function parameters in a second-stage model. To do so, we

back out productivity as a function of βl and βk:

ln(φft) = ν̂t (ln(lft), ln(kft), ln(mft), zft)− βl ln(lft)− βk ln(kft) (7)

and use then both ln(φft) and ln(φft−1) in (6) to obtain estimates for βl and βk using the moments

E

(
ξft(βl, βk)

(
ln(lft)

ln(kft)

))
= 0. (8)

Since capital and labor are assumed to be state variables and decided upon one period ahead, they

should not be correlated with ξft. Hence, we assume that labor and capital input are not adjusted

following contemporaneous shocks in productivity.6

3.2 Data and estimation

The main data sources are two. We use firm-level balance-sheet data as provided by Bureau van

Dijk’s ORBIS database complemented by balance-sheet data for Chinese firms as provided by the

Chinese Statistical Office. Apart from these data we rely on sector-country-level deflators taken

from the World Input-Output database (WIOD) to obtain measures of real values for all variables

6As noted by Ackerberg et al. (2015) this assumption leads to more precise estimates compared to using ln(lf,t−1)
as instrument which would relax the assumption of labor input being predetermined.
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measured in monetary terms.7 In order to ensure comparability across countries, we adjust all

values using sector-country-level estimates of purchasing power parity obtained from the GGDC

Productivity Level Database. For the main specification, we use an unbalanced panel of 2,990,398

firm-year observations over the years 2000-2012 in I = 15 different countries and S = 13 2-digit

ISIC manufacturing sectors. The variables of interest are defined as follows: (i) lft is the average

head count of the labor force of firm f in year t, (ii) kft is the deflated stock of fixed assets, (iii) mft

are deflated intermediate input expenses, and (iv) qft is deflated value added which is calculated as

the difference between operating revenues and intermediate-input expenses. Descriptive statistics

for each country are presented in Table 1.

Table 1: Descriptive statistics (medians) of main inputs in the production function
(in mn. Euros).

mft lft kft qft
Country Materials Employment Capital Value Added Firm-year obs.

BGR 0.17 22 0.18 0.26 48,363
CHN 4.38 130 1.42 1.24 746,851
CZE 0.77 23 0.22 0.68 86,039
DEU 9.86 89 2.93 11.39 51,676
ESP 0.31 8 0.21 0.37 426,966
EST 0.14 7 0.05 0.14 20,058
FIN 0.39 9 0.23 0.70 45,712
FRA 0.24 8 0.13 0.61 276,597
HUN 3.37 74 1.84 3.06 12,863
ITA 1.00 13 0.50 1.35 464,537
KOR 3.06 17 1.12 0.67 223,174
PRT 0.12 7 0.08 0.20 163,857
ROM 0.06 7 0.04 0.07 264,847
SVN 0.31 7 0.30 0.39 32,476
SWE 0.23 5 0.08 0.39 126,382

In the main specification, we estimate separate production functions for each of the 15 countries

and 13 sectors.8 We approximate the flexible function νt(·) of the first stage in (5) by including

all linear interaction terms of the variables (ln(lft), ln(kft), ln(mft)) and allowing for 4-digit-sector-

year shifters.9 In the second stage, we specify the evolution of productivity over time as in (6) to

allow lagged productivity to enter with a linear, a quadratic, and a cubic term and additionally

include 4-digit-sector-year shifters. Descriptive statistics of the estimated input coefficients across

WIOD-sector classifications are presented in Table 2. Using the estimates from both stages, we can

calculate productivity from equation (7).10

7We extrapolate missing years in the WIOD data using GDP data as provided by the World Development
Indicators.

8We exclude sector ISIC 3.1 23 (Coke and refined petroleum) as this sector contains too few firms to allow for an
estimation of productivity distributions.

9The 4-digit-sector-year shifters control for, e.g., sector-year-specific demand/supply shocks.
10We also consider two other alternative productivity estimates: (i) real value added per worker and (ii) total-

factor productivity estimates that are obtained using sector-specific production-function parameters as opposed to
sector-country-specific ones.
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Table 2: Descriptive statistics (medians) of estimated input coefficients in the pro-
duction function across sectors.

Sector WIOD classification βl βk

1 Food, beverages, tobacco 15t16 0.86 0.24
2 Textiles 17t18 0.83 0.16
3 Leather 19 0.82 0.15
4 Wood and cork 20 0.84 0.17
5 Pulp and paper 21t22 0.81 0.17
6 Chemicals 24 0.72 0.24
7 Rubber and plastics 25 0.83 0.18
8 Other non-metallic mineral 26 0.78 0.21
9 Basic metals 27t28 0.84 0.16
10 Machinery n.e.c. 29 0.84 0.14
11 Electrical and optical equipment 30t33 0.83 0.15
12 Transport equipment 34t35 0.84 0.16
13 Manufacturing n.e.c. 36t37 0.84 0.16

3.3 Accounting for selectivity

A closer look at the estimation sample presented in Table 1 reveals that the firms present in the

data are selectively large, especially when considering countries with relatively poorer coverage

as measured by the number of firms in the sample relative to country size. As the productivity

distribution of large firms may not be representative of the distribution in the overall economy,

we take the problem of sample selection into account and propose a method to correct for it

when estimating empirical productivity distributions. Specifically, we resort to inverse-probability-

weighted estimation of the underlying distribution using information on the true size distributions

of firms in countries and sectors (see Wooldridge, 2007; Wang, 2008).

Let us consider the entire population of firms in the year 2008 and sector s of country i.11 We refer

to the firms that are missing in the productivity estimation sample by Mf = 1 and by Mf = 0 to

the ones for which we have a productivity estimate at hand. Let us further assume that, conditional

on the size of a firm, the probability to be missing in the data is random after conditioning on some

firm characteristics. Specifically, we explicitly allow for the fact that the probability for a firm

to be missing in the estimation sample might be different for firms of different size and, hence,

productivity. As long as for any firm with the same number of employees the probability to be

missing in the data is not related to the level of productivity, the following holds:

Pr(Mf = 0|φf , lf ) = Pr(Mf = 0|lf ) ≡ ∆f (lf ). (9)

This condition guarantees that the probability of a firm to be non-missing in the estimation sample

is a function of its employment level only. If we knew the true number of firms existing for each

11Note that the subsequent analysis is conducted at the country-sector level, but we skip the respective indices
in the following and focus on a generic country and sector. Moreover, we drop the time index here, as we consider
only a cross-section of data for the year 2008 to estimate the detailed moments of productivity distributions across
countries and sectors.
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level of employment, NTrue(lf ), we could easily calculate the probability that an observation is

non-missing conditional on its level of employment:

∆f (lf ) =
NSample(lf )

NTrue(lf )
, (10)

where NSample(lf ) denotes the number of firms with employment level lf observed in the estimation

sample. While we do not observe NTrue(lf ) directly, we know the distribution of firms across

employment-size bins as well as the total number of firms for any sector and any country.12

Specifically, the OECD Structural and Demographic Business Statistics (SBS) database provides

information on the distribution across five size classes for all countries in our data except for

China.13 These size classes are (i) firms with 1-9 employees, (ii) firms with 10-19 employees, (iii)

firms with 20-49 employees, (iv) firms with 50-249 employees, and (v) firms with at least 250

employees. Using these data on firm-size distributions in a histogram with different bin widths, we

fit a piecewise-linear function to obtain an estimate of the true relative frequency of firms at any

level of employment. To do so, we take the midpoint of each histogram bar and connect it via a

linear piecewise function to the midpoints of neighbouring bars, respectively. With these estimates

at hand and the true total number of firms in a country and sector, we obtain an estimate of

N̂True(lf ) that allows us to calculate ∆̂f (lf ) as follows:

∆̂f (lf ) =
NSample(lf )

N̂True(lf )
. (11)

We can now obtain a consistent estimate of the nonparametric distribution of firms under the

maintained assumptions:

f̂(φ) =
1

nhn

n∑
f=1

(1−Mf )

∆̂f (lf )
K

(
φ− φf
hn

)
, (12)

where hn denotes the bandwidth, n is the true number of firms in a country’s sector and K(·) is

a kernel function. We use a second-order Epanechnikov kernel adapted to weighted kernel density

estimation following Wang and Wang (2007) and determine the optimal bandwidth by likelihood

cross validation (see Li and Racine, 2006).

Let us assess how well the latter approach works using a concrete example. For this, we take the

estimation sample of Spain which provides one of the best firm coverages in the sample. Let us

consider this sample as the true (untruncated) data and calculate the size distribution using five

size classes as defined in the SBS data. Then we randomly discard 80% of the observations among

12Later on, we will use the fact that
∑

(lf )
NTrue(lf ) within a country and sector is equal to the total measure of

firms in that country and sector, Ns
i .

13A similar data set based on two size classes is available for China from the Chinese Statistical Office. The two
size classes comprise firms above and below 300 employees, respectively.
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Figure 4: Monte-Carlo exercise to illustrate the methodology to account for se-
lectivity
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the 80% smallest firms. In total, we end up with a sample consisting of 36% of the original data

with the average size of the remaining firms being bigger than in the outset. In the next step, we

estimate the inverse-probability weight as described above using five size classes that are informed

by the original data but provide only as much information as the data provided by the OECD SBS

data, and estimate an inverse-probability-weighted kernel density. Figure 4 depicts the original

(”true”) distribution, the truncated distribution, and the predicted distribution using the selected

data together with the proposed methodology. Comparing the predicted distribution to the true

distribution shows that the updating mechanism performs very well. In particular, by artificially

dropping observations from the distribution we introduce a positive sum of squared deviations

between the actual and truncated CDFs. Our correction procedure allows to reduce the sum of

squared deviations by 98.7%.14

4 Empirical productivity distributions

4.1 Distribution heterogeneity between sectors and countries

We present estimated CDFs for all 15 · 13 = 195 country-sector productivity distributions in the

left panel of Figure 5. By way of comparison, we observe a high level of heterogeneity of the CDFs

across countries and sectors. This heterogeneity stems from large differences in location, scale, and

shape of the distributions as well as all other dimensions. Hence, the results of our analysis in

Section 2, which showed how such differences in distributions shape trade flows, are indeed relevant

for the real data.

To formally test and measure the magnitude of deviations between two CDFs we use the

14Upon artificial truncation, the sum of squared deviations in terms of CDF points is 0.0947, which decreases to
0.0012 when using the proposed correction.
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Kolmogorov-Smirnov (KS) statistic. This statistic is the maximum absolute distance of two CDFs,

FA(φ) and FB(φ): KSAB = supφ |FA(φ) − FB(φ)|, where supφ denotes the supremum and FA(·)
and FB(·) are two generic CDFs. We illustrate this measure in the right panel of Figure 5 where

we plot two country-sector distributions and KS statistics between them. The KS statistic is useful

because it allows us to test whether any two distributions, F si (φ) and F s′j (φ), are statistically dif-

ferent from each other or not. We conduct the test for 195 · (195− 1)/2 = 18, 915 pairs of which a

large number are statistically different from each other. With the data at hand, the null hypothesis

of F si (φ) = F s′j (φ) is rejected at the 10% significance level for more than 87% of the pairs.

Figure 5: Illustration of CDFs and Kolmogorov-Smirnov statistic.
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Figure 6: Illustration of CDFs and Kolmogorov-Smirnov statistic.

The heterogeneity stems from distributional differences across countries as well as sectors. To

examine which one of the two dimensions is relatively more important, we calculate KS statistics

across countries within each sector, KSsij , and across sectors within each country, KSss′i . We plot

the former and the latter along with the 95% confidence bands in Figure 6. The numbering of

sectors corresponds to the list of sectors described in Table 2. The left panel of the figure suggests
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that, on average, KSsij amounts to about 0.60 and is quite stable across sectors. On the other hand,

within-country differences in productivity distributions across sectors are relatively smaller with an

average value of KSss′i of 0.34. However, the variation of KS statistics across different countries is

relatively larger than that across sectors.

4.2 Empirical productivity distributions versus customary parameterizations

In this section, we conduct a series of statistical tests aimed at determining whether the empirical

distributions that we have calculated can be parameterized under a single parametric family. Some

earlier work compared how a specific parametric distribution model fitted the data in various

dimensions usually using special cases of a single country or sector.15 The goal here is not to

choose some or the best-fitting customary parametric model among its alternatives but rather to

establish a general upper bound for the potential success of such parameterization approaches.

We consider seven customary fat-tailed distributions that have been used to model firm-level hetero-

geneity and list them along with their CDFs in Table 3. We allow all parameters of each distribution

to vary across countries and sectors but constrain them to be of the same family. Typically, quan-

titative trade theory allows only a subset of parameters to vary across countries and sectors. In a

subset of our tests, we allow for a higher flexibility relative to the common assumptions by allowing

all estimated productivity distribution parameters to vary across countries and sectors. For each

parametric family, we estimate country-sector-specific parameters using a QQ-estimator as in Nigai

(2017). The estimator minimizes the sum of squared differences between (log) observed quantiles

of productivity and their predictions as follows:

Θ = min
Θ

{∑
q

(QE(q)−QP (q|Θ))2

}
, (13)

where QE(q) is the log of the empirical quantile q of productivity and QP (q|Θ) is its parametric

prediction conditional on the parameter vector Θ. In this equation and as specified in Table 3 for

each parametric distribution family Ω, Θ is the vector of country-sector location parameter bsi and

sector or even country-sector shape parameters θsi for a generic country and sector. Once we obtain

an estimate thereof which we denote by Θ̂, we use it to calculate F̂ si (φ|Ω) for each parametric family

Ω in Table 3. We then use the respective associated KS-statistic to test whether the parametric

prediction F̂ si (φ|Ω) is statistically different from the empirical F si (φ) or not. We report the share of

distributions that are statistically different from the empirical distribution under each parametric

family in Table 3.

For each pairwise comparison (with one pair referring to a sector, country, and parametric family

versus the empirical analogue) of CDFs, we conduct a KS test under the null that H0 : F si (φ) =

F̂ si (φ|Ω) at the 5% and 10% significance levels. First, we constrain the shape parameter to be

15For example, see di Giovanni et al. (2011), Corcos et al. (2012), Eaton et al. (2013), Head et al. (2014), Freund
and Pierola (2015), Bas et al. (2017), and Fernandes et al. (2018).
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Table 3: Common parametric distributions

Family (Ω) CDF (F si (φ|Ω)) Share of H0 not rejected

Θ = {bsi , θs} Θ = {bsi , θsi }

at 5% at 10% at 5% at 10%

Fréchet exp
(
−bφ−θ

)
0.09 0.12 0.14 0.16

Gumbel exp (− exp (−(φ− b)/θ)) 0.11 0.12 0.56 0.58

Log-Logistic (1 + (φ/b)−θ)−1 0.29 0.33 0.63 0.68

Log-Normal Φ ((lnφ− b)/θ) 0.30 0.33 0.45 0.53

Pareto 1 - bθφ−θ 0.04 0.05 0.04 0.05

Power (φ/b)θ 0.05 0.06 0.11 0.12

Weibull 1− exp
(
−(φ/b)θ

)
0.20 0.22 0.50 0.52

Notes: We conducted a total of 195 tests for 15 countries and 13 sectors. The null
hypothesis is H0 : F si (φ) = F̂ si (φ|Ω). We conduct tests at 5% and 10% significance
levels and calculate the share of tests for which we cannot reject the null under each
parametric family.

sector-specific with θs, whereas the location parameter bsi is unconstrained and can vary across both

countries and sectors. This is the most common approach taken in quantitative trade theory.16 We

report the share of KS tests for which we cannot reject the null in Columns 3 and 4 in Table 3

under this set of assumptions for each parametric family Ω. At the 5% significance level, for 30%

of the country-sector-specific productivity distributions we cannot reject that they belong to the

Log-normal family, which is the best-performing family in this exercise. The other 70%, however,

are statistically different from the Log-normal distribution. The share of not-rejected pairwise KS

tests goes up slightly when we increase the significance level to 10% in the next column, but the

overall result carries through. Second, we relax the constraint on the shape parameter and let it

be country-sector specific, too, with θsi . The corresponding results are reported in the next two

columns. Now, in the best-case scenario one uses a Log-logistic distribution, and we cannot reject

placing 63% and 68% of the empirical distributions under this distribution family at the 5% and

10% significance levels, respectively. However, even if one uses the relatively flexible parametric

approach, which to the best of our knowledge has not been used in the literature, at least about

one-third of the total number of country-sector-specific distributions are statistically different from

a single parametric distribution family.

The results in this section suggest that there is little hope in finding a parametric family with a

small number of parameters that would be able to simultaneously match empirical productivity

distributions in multiple sectors and countries. Using the Fréchet distribution to parameterize

16For example, see Eaton and Kortum (2002), Arkolakis et al. (2008), Chaney (2008), and Costinot et al. (2012)
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productivity distributions in models based on Eaton and Kortum (2002) and the Pareto distribution

in models based on Melitz (2003) – the most commonly used parametrizations in the literature

– is not appropriate for at least 86% and 95% of the country-sector distributions, respectively.

Hence, assessing the role of technology for economic outcome or quantifying the effects of a change

in fundamentals on trade outcomes is likely problematic unless one uses empirical productivity

distributions. In the next section, we describe how to implement empirical technology distributions

of the estimated kind in Eaton-Kortum and Melitz-type models and how technology shapes patterns

of international trade.

5 Two prominent models of international trade

In what follows, we use the estimated empirical country-sector-specific CDFs, F si (φ), in the two

canonical models of international trade which embed heterogeneity in productivity at the level of

firms, namely the ones of Eaton and Kortum (2002) and Melitz (2003). We consider multi-country

and multi-sector versions of these two models with input-output linkages. Although these two mod-

els differ substantially in terms of the underlying micro-foundations and economic assumptions, they

both emphasize the role of firm-level heterogeneity in productivity levels for trade outcomes, and

they are natural frameworks for assessing how differences in F si (φ) shape patterns of international

trade. We start with presenting a set of aggregate conditions which are common to both models

and highlight the relevant differences in the subsections that follow.

5.1 General setup

We assume that each country i = 1, ..., I is endowed with a measure Li of equipped labor as in

Alvarez and Lucas (2007) which is mobile across sectors in i. Production in each sector s = 1, ..., S

requires labor and intermediate inputs. Workers have the following upper-tier utility function that

incorporates consumption from all sectors of the economy s according to a Cobb-Douglas utility

function as follows:

Ui(C
s
i ) =

S∏
s=1

(Csi )α
s
i , where

S∑
s=1

αsi = 1, (14)

which leads to the following expression for total final expenditure on Csi :

P si C
s
i = αsiLiwi. (15)

We assume that Csi is a CES aggregate from all goods available for consumption (produced domes-

tically and imported) in each sector s and P si is the accompanying CES price index. Each CES

aggregate combines varieties available in i according to the sector-specific elasticity of substitution

σs. Let us use φ to index firms by the respective productivity level. The production function is
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Cobb-Douglas and combines labor and materials in the following way:

qsi (φ) = φ`si (φ)β
s
ims

i (φ)1−βsi , where βsi ∈ (0, 1). (16)

We use `s(φ) and ms
i (φ) to denote labor and materials used for production by firm φ and by βsi

and 1 − βsi their share in production, respectively. The material input is comprised of the output

of all sectors with sector-specific intensities. Let γk,si be the intensity of sector-k output used in the

production of sector s, then ms
i is defined as:

ms
i =

S∏
k=1

(Cki )γ
k,s
i , where

S∑
k=1

γk,si = 1. (17)

Given cost minimization, the cost of the input bundle for firm φ required to produce one unit of

output can be written as:

csi = asiw
βsi
i (rsi )

1−βsi , where asi = (βsi )
−βsi (1− βsi )β

s
i−1, (18)

where wi denotes the price of labor in i and the price of the material input, rsi , is defined as:

rsi =
S∏
k=1

(
P si

γk,si

)γk,si
. (19)

Let λsij denote the share of j’s total expenditure in sector s on goods from country i. Total

expenditures, Y s
i , can be specified as the sum of final demand by consumers and intermediate

demand by firms:

Y s
i = αsi (Liwi) +

S∑
k=1

Γ(γk,si )
I∑
j=1

λsijY
s
j , (20)

where Γ(γk,si ) is a model-specific linear function of γk,si specified separately for the two models in

the subsequent two subsections. Finally, given the expression for total demand for goods from

sector s in country i, we can specify the trade-balance condition as:

S∑
s=1

I∑
j=1

λsjiY
s
i =

S∑
s=1

I∑
j=1

λsijY
s
j . (21)

Note that we have not specified the expressions for Γ(γk,si ), P si and λsij . This is because these two

variables are characterized by different sets of model-specific equations. We discuss them next.
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5.2 Perfect competition: Eaton and Kortum (2002)

In Eaton and Kortum (2002), producers are perfectly competitive. In each country and sector

potential producers draw their productivity from the country-sector-specific productivity distribu-

tion F si (φ) for each variety φ.17 Producers from country i can supply internationally subject to

iceberg-type trade costs dsij such that the price offered by the producer of φ in sector s from country

i to customers in country j is

psij(φ) =

{
csid

s
ij

φ

}
. (22)

Given the CDF of the productivity distribution, F si (φ), the CDF of the distribution of prices that

country i presents to country j in sector s is

F sij(p) = 1− F si
(
csid

s
ij

p

)
. (23)

Customers in country j will purchase φ if its producer offers the lowest cost gross of trade costs

such that the actual price of φ in country i is

psi (φ) = min
k

{
cskd

s
kj

φ

}
. (24)

The share of goods that country j purchases from country i in sector s can be specified as the

probability that i is the minimum-cost supplier in that sector, or

λsij = Pr

(
psij(φ) ≤ min

k 6=i

{
pskj(φ)

})
=

∫ 1

0

∏
k 6=i

(
1− F skj(p)

)
dF sij(p). (25)

We also know the distribution of prices in sector s and importing country j:

F sj (p) = 1−
∏
k

(
1− F skj(p)

)
. (26)

This means that the aggregate price in sector s in country i can be calculated as

P si =

(∫ 1

0
p1−σsdF si (p)

) 1
1−σ

. (27)

Finally, to close the model we need to specify that in the Eaton-Kortum model Γ(γk,si ) = γk,si .

Note that we need strong assumptions about F si (φ) to further simplify the expressions in (25) and

(27). In particular, if φ ∼ Fréchet(T si , θ
s), then λsij and P si can be expressed as

λsij =
T si (csid

s
ij)
−θs∑

k T
s
k (cskd

s
kj)
−θs and P si = Bs

(∑
k

T sk (cskd
s
ki)
−θs
)− 1

θs

, (28)

17It is assumed that there is a unit measure of varieties φ in each sector.
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where Bs = Γ
(
θs+1−σs

θs

)(1/(1−σs))
is a constant and Γ(·) denotes the Gamma function. However,

as we have demonstrated in the previous sections, the empirical productivity distributions cannot

be well approximated by the Fréchet distribution, so that the expressions in (28) do not generally

hold. Note that this implies that the functional form of trade flows in the Eaton-Kortum model

cannot generally be represented by a standard log-linear specification of the gravity equation of

international trade.

5.3 Monopolistic competition: Melitz (2003)

Firms are monopolistically competitive and maximize the usual total profit function comprised of

all profits in potential markets j by charging corresponding prices psij(φ). The profit function for

market j is

πsij(φ) = max
psij(φ)

{(
psij(φ)1−σs − csi

φ
psij(φ)−σ

s

)
(P sj )σ

s−1Y s
j − wifsij

}
, (29)

where fsij is a sector-specific cost of exporting paid in the units of domestic labor. Differentiating

equation (29) with respect to the price yields the usual constant-mark-up expression for profit-

maximizing prices:

psij(φ) =
σs

σs − 1

csi τ
s
ij

φ
, (30)

where τ sij is a measure of sector-specific iceberg trade costs between countries i and j. Next, we

plug back the expression for prices into the profit function to obtain:

πsij(φ) =
1

σs

(
σs

σs − 1

csi
φ

)1−σs

(P sj )σ
s−1Y s

j − wif sij . (31)

The zero-profit condition pins down the value of productivity of the marginal exporter:

(φs∗ij )1−σs =
(P sj )σ

s−1Y s
j

σswif sij

(
σs

σs − 1
csi τ

s
ij

)1−σs

. (32)

Let N s
i denote the number of potential entrants in country i and sector s. Note that we follow

Chaney (2008) and assume that N s
i is fixed. This is also sufficient to avoid potential corner solutions

in multi-sector models with monopolistic competition as described in Kucheryavyy et al. (2016).

We can calculate the CES price index as

P sj =

(
I∑
i=1

N s
i

(
σs

σs − 1
csi τ

s
ij

)1−σs ∫ 1

F si (φs∗ij )
φσ

s−1dF si (φ)

) 1
1−σs

. (33)

Similarly, we can derive the expression for trade shares between i and j in sector s:

λsij = N s
i (P sj )σ

s−1

(
σs

σs − 1
csi τ

s
ij

)1−σs ∫ 1

F si (φs∗ij )
φσ

s−1dF si (φ). (34)
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Finally, we specify that Γ(γk,si ) =
(σs − 1)γk,si

σs
.

If we assume that φ ∼ Pareto(bsi , ϑ
s), then the expressions for λsij and P si can be simplified to:

λsij =
Ns
i (csi τ

s
ij)

1−σs(bsi )
ϑs(φ∗ij)

(σs−1)−ϑs∑
kN

s
k(cskτ

s
kj)

1−σs(bsk)ϑs(φ∗kj)
(σs−1)−ϑs and P si = Ds

(∑
k

Ns
k(cskτ

s
ki)

1−σs(bsk)ϑ
s

(φ∗ki)
(σs−1)−ϑs

) 1
1−σs

.

where Ds =
(

ϑs

ϑs−(σs−1)

) 1
1−σs σs

σs−1 is a constant. Again, as demonstrated in Section 4, φ does not

generally follow a Pareto distribution, and then the previous set of equations does not hold.

6 Calibration

In this section, we describe the calibration procedure and data sources. The data sources used to

estimate firm-level productivity parameters, φ, are described in Section 3. Given the availability

of the productivity data, we calibrate the two models to 15 countries (plus one residual country

capturing the rest of the world) and 13 sectors (plus one residual sector). The benchmark year

for all data is 2008. The algorithms developed in this paper are suitable for solving large-scale

general equilibrium models with arbitrary firm-level productivity distributions. The distributions

are generally made usable for a quantitative analysis by quantizing them on a fine sector-country-

specific grid. We provide further details on the solution algorithm in the Appendix.

In our calibration as well as the counterfactual exercises, we contrast the results obtained under the

empirical productivity distributions to the two default parametric families that are used to parame-

terize distributions in the Eaton-Kortum and Melitz models. In the former model we use the Fréchet

and in the latter the Pareto distribution, respectively. While comparing trade outcomes between

the two is not our primary goal, results obtained under the single-family parameterizations serve

two purposes: they demonstrate severe limitations imposed by the customary parameterizations

and they provide familiar benchmark levels.

6.1 Data sources

Parameters common to the models of Eaton and Kortum (2002) and Melitz (2003) are {αsi , βsi , γ
k,s
i }.

These parameters are calculated using data from the World Input-Output Database as Cobb-

Douglas consumption shares, value added shares, and input-output shares, respectively. In the cal-

ibration procedure, we also use data on trade flows in 2008 from the World Input-Output Database

and nominal GDP per capita in 2008 from the World Development Indicators.

In addition, for the calibration of the Melitz model we use data on the number of firms described in

Section 3. We also use data on the number of exporters in each sector and the number of exporters

by partner country from the OECD Trade by Enterprise Characteristics Database. Together with

the data on the total number of firms in each sector, we calculate the share of exporters in each
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sector for each country pair as a product of the probability to export and the probability to export

to each destination in that sector.18

6.2 Calibration procedure

In the multi-sector version of the model of Eaton and Kortum (2002), we calibrate the I levels

of Li and the I2S levels of dsij . We choose the respective values so as to fit I observations on

nominal GDP per capita, wi, and I2S observations on trade shares, λsij , subject to the general-

equilibrium constraints in Section 5. We calculate two versions of dsij . We use dsij(e) and dsij(h) to

denote trade costs calibrated given the empirical CDFs, F si (φ), and their Fréchet approximations,

respectively. Given that we target and match the same data moments with the two distributions,

differences between the non-parametric and parametric productivity distributions inevitably result

in differences in calibrated trade costs. We illustrate them in the left panel of Figure 7. On average,

trade costs calibrated under the assumption of the Fréchet distribution are 40% higher relative to

those calibrated when using the empirical CDFs.

Figure 7: Calibrated trade costs
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We calibrate Li and τ sij in the multi-sector version of Melitz (2003) using the same data. Again,

calibrated variable trade costs depend on whether we use the empirical CDFs, F si (φ), or their Pareto

approximations. We use τ sij(e) and τ sij(h) to denote the former and the latter, respectively. They are

plotted in the right panel of Figure 7. On average, trade costs calibrated under the non-parametric

CDFs are higher than those under the Pareto approximation by 145%. In addition, the Melitz

model also requires us to calibrate I2S values of fixed market-entry costs f sij . For identifying the

latter, we use the I2S observations on sectoral export shares together with the general-equilibrium

structure of the underlying model.

18Whenever observations on probability to export were missing, we imputed them using a log-linear regression
with the number of firms in that sector in origin and destination, and (log) distance between them as predictors. We
also imputed missing instances of probability to export to each destination using a log-linear regression with export
share in total output to that market and sector, and total number of firms. For residual country and residual sector,
we impute the variables using averages for the rest of our sample.
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With regard to the calibration, the following consideration is important. First, the Eaton-Kortum

and Melitz models rely on different structures and mechanisms at work. For this reason, when

looking on trade and other data through the lens of these models, the same data on outcome

will lead to different fundamentals – such as variable trade and fixed market-access costs. Hence,

the same outcome is generated by different economic primitives. Within each class of models, a

similar conclusion is reached when comparing fundamentals calibrated under empirical productivity

distributions to those obtained under their parametric counterparts. Given limited degrees of

freedom and the fact that we match the same observable data, differences between empirical and

parametric CDFs lead to different sets of fundamentals, as mentioned above.19 In other words, when

requiring to fit the same outcome data, the fundamental parameters will not be identical neither

within distributional forms between model types nor between distributional forms and within model

type.

However, we should note that the key results presented here are qualitatively robust and carry

through when using a single set of fundamentals to inform both the non-parametric and parametric

model versions of the underlying models (then, however, as said, the trade-share and factor-cost

vectors inevitably differ between the nonparametric and parametric model versions).

7 Quantifying the impact of technology on international trade

outcomes

In this section, we make use of the data on empirical productivity distributions to understand the

role of technology for trade. We start by quantitatively assessing the importance of the first-order

effect defined as the impact of technological differences between countries as well as across sectors

on trade outcomes. In the second part of the section, we asses the importance of the gradient

effect by examining how productivity distributions shape the effect of changes in fundamentals on

changes in trade and welfare. Finally, we discuss micro-to-macro implications of using empirical

productivity distributions for model choice and the perceived isomorphism with respect to changes

in trade costs between the Eaton-Kortum and Melitz models.

7.1 The first-order effect of technology on international trade

What drives differences in trade patterns across countries and sectors? How much does technology

contribute to explaining the observed λsij? While these questions are at the heart of international

trade, little is known about the role of technology in canonical trade models with heterogeneous

firms. This is due to the fact that the customary approach towards technology in most of the

quantitative work in international economics is what we call a macro-based approach, which is

unable to answer the above questions for two reasons.

19We should emphasize that one of the following two cases hold, if the empirical and the parametrically approx-
imated CDFs of firm productivity generally differ: the same trade shares in the two models must rest on different
vectors of fundamentals, or the same vectors of fundamentals will produce different vectors of trade shares.
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First, the macro-representation of technology usually relies on two parameters only, {T si , θs} in the

Eaton-Kortum model and {bsi , ϑs} in the Melitz model, where country(-sector) differences in average

technology are determined as a residual quantity and the dispersion of technology is estimated as

a parameter on ad-valorem trade or production costs. As we have seen in Section 3, this approach

drastically reduces the dimensionality of empirical productivity distributions, which may lead to a

stark mis-characterization of how the CDF of productivity, F si (φ), shapes trade patterns. Second,

due to the highly non-linear nature of trade models, quantifying the share of the variance in λsij
which is explained by the empirical nonparametric F si (φ) using traditional estimation techniques

is not possible.

We tackle these two challenges as follows. First, instead of relying on parameterizations we use

observed distributions of firm-level productivity. Second, we quantify the role of technology for

explaining trade flows by exploring a series of counterfactual experiments in open-economy gen-

eral equilibrium specifically designed for the purpose of gauging the importance of technology for

outcome in the relevant models.

In quantitative general-equilibrium models, the observed level of trade shares λsij is the outcome

of an interplay between a set of economic fundamentals and the economic equilibrium conditions

that are inherent to the model at hand. We can think of the two considered models as mappings

that translate inputs in the form of a set of economic fundamentals into output in the form of

endogenous variables including counterfactual trade shares, λs′ij . In order to quantify the role of

total factor productivity differences in shaping observed trade shares, we will evaluate counterfac-

tual scenarios where we eliminate the differences in productivity distributions across countries or

sectors while keeping all other economic fundamentals as in the baseline equilibrium pertaining to

data of the year 2008. Let us use F = {D,O} to denote all fundamentals, where D contains all

parameters describing the moments of productivity distributions and O contains all other economic

primitives of a considered trade model. We consider two counterfactual scenarios: FD′ = {D′,O}
and FO′ = {D,O′}, where D′ and O′ denote counterfactual productivity distributions and coun-

terfactual values of all other economic fundamentals, respectively. For each scenario, we define

changes in counterfactual trade shares relative to their benchmark values:

∆λsij(FK) = log
(
λs′ij(FK)

)
− log

(
λsij(F)

)
for K = D′,O′ , (35)

where λsij(F) are trade flows in the benchmark equilibrium. We then calculate the share of sum of

squares attributed to eliminating differences in productivity-related fundamentals in D relative to

eliminating differences in all other factors as follows:

R(FD′) =
SSQ

[
∆λsij(FD′)

]
SSQ

[
∆λsij(FD′)

]
+ SSQ

[
∆λsij(FO′)

] , (36)
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where SSQ[·] is the sum of squares of all international trade flows such that i 6= j.20 The measure

R(FD′) is naturally bounded between 0 and 1 and can be interpreted as a pseudo-R2. By eliminating

asymmetries in the two counterfactual scenarios, FD′ and FO′ , in specific ways, we are not only

able to quantify the relative importance of technology relative to other factors but also examine

different dimensions of technological differences and their roles in shaping trade flows. In particular,

technological differences shape trade through their interplay across sectors within countries as well

as through their interplay within sectors across countries. As we have mentioned before, we broadly

follow David Ricardo’s ideas in defining the former as modified absolute advantage and the latter

as modified comparative advantage.

As demonstrated in Section 4, the two dimensions of technological differences matter empirically, as

productivity distributions are heterogeneous both across sectors and even more so across countries.

To emphasize these two distinct margins of productivity heterogeneity, we conduct two distinct

series of counterfactual experiments. First, we eliminate differences in productivity distributions

for each sector s across different countries but not across sectors such that KSsij → 0 for all i

and j. This exercise eliminates modified absolute advantage. Second, we eliminate differences

in sectoral productivity distributions within each country such that KSss′i → 0 for all s and s′,

which eliminates modified comparative advantage. We quantify the response of trade flows to these

counterfactual changes in technology next. Naturally, the concepts of absolute and comparative

advantages are not as clear-cut in our context due to the presence of multiple frictions and asym-

metries in fundamentals. However, they are in the spirit of the original notions and capture the

main intuition.

7.1.1 Absolute advantage: Eliminating productivity differences across countries

In the first series of counterfactual experiments, we eliminate country differences in F si (φ) denoted

by scenario FD′ and relate the outcome of this experiment to the counterfactual scenario FO′ ,

where we eliminate differences in all other factors {Li, αsi , βsi , γ
s,k
i , dsij , τ

s
ij , f

s
ij , N

s
i }. We endow each

country i with the corresponding target country’s fundamentals. To make sure that our results

do not depend on the chosen benchmark, we conduct I counterfactual experiments choosing each

country in the sample as the target once at a time. This eliminates differences across countries

in each sector but not across sectors within countries. Let v denote the target country all others

converge to, then productivity convergence implies for the counterfactual productivity distribution

(indicated by a prime) that:

FD′ ⇔ F si (φ)′ = F sv (φ) for all i, s. (37)

Convergence in all other factors implies:

FO′ ⇔ {L′i, αs′i , βs′i , γ
s,k′
i , ds′ij , τ

s′
ij , f

s′
ij , N

s′
i } = {Lv, αsv, βsv, γs,kv , dsvj , τ

s
vj , f

s
vj , N

s
v} for all i, s. (38)

20Our results are robust to including intra-trade shares, λsii, in the analysis. However, we choose not to include
them because we concentrate on explaining international patterns.
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We calculate counterfactual trade flows under each scenario and the associated R(FD′) for models

based on both Eaton and Kortum (2002) and Melitz (2003). In total, we conduct I experiments

and calculate FD′ for S sectors such that there are IS counterfactual values of FD′ . We report

summary statistics of the counterfactual results across all experiments and sectors in Table 4. On

average, differences in productivity distributions explain 15% and 21% in the Eaton-Kortum and

Melitz model, respectively. However, the role of technology is underemphasized by customary

parameterization as productivity differences under Fréchet and Pareto explain 12% and 8% of the

total variation in trade flows in the two models. The results also have a relatively higher variation

under empirical productivity distributions.

Table 4: Summary Statistics (Absolute Advantage)

Average Std. Dev. Min. Median Max.

EK + Empirical 0.15 0.13 0.00 0.11 0.66
Melitz + Empirical 0.21 0.11 0.03 0.20 0.64
EK + Fréchet 0.12 0.06 0.02 0.11 0.28
Melitz + Pareto 0.08 0.05 0.01 0.08 0.30

The results in Table 4 suggest that there is a substantial variation in the role of modified absolute

advantage across sectors and experiments. We next turn to decomposing this variation across

sectors and countries to study heterogeneous effects of modified absolute advantage on international

trade. We start with examining how the role of modified absolute advantage varies across sectors.

For that, we use IS results on R(FD′) and calculate the average along with 95% confidence bands

for each sector s across I experiments and summarize the associated findings in Figure 8. In

the left panel, we report results obtained under the empirical productivity distributions. The

average contribution of modified absolute advantage in explaining trade shares varies across sectors

in intervals of (7%, 23%) and (11%, 32%) in the Eaton-Kortum and Melitz models, respectively.

According to the Eaton-Kortum model, the three sectors with the highest R(FD′) are {Textiles 0.18

(0.13), Leather 0.21 (0.12), Non-metallic minerals 0.23 (0.18)}, where we list averages next to the

sector name and standard deviations in parentheses. In the Melitz model, the three sectors with

the highest R(FD′) are {Transport equipment 0.27 (0.10), Textiles 0.30 (0.09), Leather 0.32 (0.16)}.
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Figure 8: Eliminating modified absolute advantage (sectoral heterogeneity)

For comparison, we present the results of the same experiment but obtained using parameterized

productivity distributions in the right panel. The respective average values of R(FD′) within each

sector vary in the intervals of (3%, 19%) and (4%, 14%) in the Eaton-Kortum and Melitz models,

respectively. The contribution of technology across sectors is significantly lower relative to the

results calculated using the empirical (nonparametric) productivity distributions suggesting that

customary parametrizations of productivity distributions tend to bias the role of technology for

trade downwards but also in certain instances lead to qualitative differences. In the Eaton-Kortum

and Melitz models the three sectors with the highest average R(FD′) are {Basic metals 0.14 (0.05),

Other non-metallic mineral 0.16 (0.06), Food, beverages, tobacco 0.19 (0.06)} and {Rubber and

plastics 0.10 (0.05), Transport equipment 0.10 (0.06), Leather 0.14 (0.08)}, respectively, when using

the parameterized productivity distributions.

Next, we examine how modified absolute advantage shapes exports and imports differentially across

countries. For that, we pool benchmark and counterfactual trade shares on the export and import

side for each country i in all sectors S and calculate R(FD′) as in equation (36) for each of the I

experiments. We calculate average values of that statistic along with the 95% confidence bands for

each country i across all experiments in Figure 9. The results suggest a high level of heterogeneity in

R(FD′) across countries. The average of R(FD′)s varies across countries in the intervals of (8%, 35%)

and (15%, 34%) in the Eaton-Kortum and Melitz models, respectively. According to the Eaton-

Kortum model, modified absolute advantage matters most for exports and imports for Germany

0.28 (0.16), Korea 0.31 (0.18), and Hungary 0.35 (0.18). For these three economies, roughly one-

third of the variance in international trade shares can be explained by cross-country differences in

productivity distributions alone. In the Melitz model, the three countries with the highest R(FD′)

with the following averages and standard deviations are Korea 0.28 (0.10), Germany 0.31 (0.11),

and China 0.34 (0.08).
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Figure 9: Eliminating modified absolute advantage (country heterogeneity)

For comparison purposes, we once more report the results of the same experiment calculated un-

der the parameterized distributions in the right panel of Figure 9. There are several important

differences to the nonparametric outcome. First, the calculated values of R(FD′) are quantitatively

significantly lower for the Eaton-Kortum and Melitz models. The average of R(FD′)s varies in the

intervals of (5%, 26%) and (4%, 16%), respectively. The variation within countries is also signif-

icantly smaller which again points to an understated role of technology for explaining trade due

to the customary parameterizations of technology. According to the Eaton-Kortum and Melitz

models, the three top countries with the largest impact of modified absolute advantage are Italy

0.17 (0.05), France 0.20 (0.04), Germany 0.26 (0.04) and China 0.13 (0.04), France 0.14 (0.05),

and Germany 0.16 (0.06), respectively.

7.1.2 Comparative advantage: Eliminating productivity differences across sectors

within countries

To understand the second dimension of how technological differences determine trade flows, we

eliminate productivity differences across all sectors within a country but not across countries. As

mentioned above, we refer to such within-country differences as modified comparative advantage.

Again we conduct two series of experiments, where we first eliminate differences across F si (φ) in

each country i such that KSss′i → 0. Then, we contrast the results with those obtained when

we eliminate all other sectoral asymmetries where we endow each sector s in country i with the

corresponding fundamentals observed in the benchmark sector (including bilateral trade and fixed

costs). We conduct S counterfactual experiments choosing each sector in the sample alternatively

as a target. Let ` denote the target sector, then eliminating productivity differences across sectors

means:

FD′ ⇔ F si (φ)′ = F `i (φ) for all i, s. (39)
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Sectoral convergence in other factors is defined as follows:

FO′ ⇔ {σs′, αs′i , βs′i , γ
k,s′
i , ds′ij , τ

s′
ij , f

s′
ij , N

s′
i } = {σ`, α`i , β`i , γ

k,`
i , d`ij , τ

`
ij , f

`
ij , N

`
i } for all i, s. (40)

As before, we calculate counterfactual values of trade shares for each convergence scenario and

report summary statistics calculated accross all experiments and sectors in Table 5.21 There is

a total of S experiments and we calculate R(FD′) for each sector, which leads to S2 values of

R(FD′). On average, modified comparative advantage explains 39% and 46% of the total variation

in trade flows in the Eaton-Kortum and Melitz model, respectively, suggesting a substantially more

pronounced role for modified comparative advantage as compared to modified absolute advantage.

Customary parameterizations lead to a substantial understatment of the role of technology, which

is almost halved in the Eaton-Kortum model under the Fréchet parameterization and is more than

three times lower in the Melitz model under the Pareto parameterization.

Table 5: Summary Statistics (Comparative Advantage)

Average Std. Dev. Min. Median Max.

EK + Empirical 0.39 0.18 0.06 0.39 0.80
Melitz + Empirical 0.46 0.11 0.20 0.47 0.77
EK + Fréchet 0.21 0.08 0.04 0.20 0.49
Melitz + Pareto 0.15 0.06 0.03 0.14 0.33

As before, we quantitatively assess the heterogeneity in the role of modified comparative advantage

across sectors. For that, we calculate counterfactual values of trade shares for each convergence sce-

nario and report sector- and country-specific average values of R(FD′) across S experiments along

with the 95% confidence bounds. In Figure 10, we report how modified comparative advantage

shapes sectoral trade shares under the empirical productivity distributions. The results are not

only stronger relative to the ones associated with modified absolute advantage but also more het-

erogeneous – in particular in the Eaton-Kortum model. The average of R(FD′) varies across sectors

in the intervals of (12%, 62%) and (38%, 62%) in the Eaton-Kortum and Melitz model, respec-

tively. Recall that Leather and Textiles were the two sectors where modified absolute advantage

mattered most for explaining international trade. Modified comparative advantage, on the other

hand, matters the least for these two sectors as, on average, it explains only 0.22 (0.12) and 0.39

(0.13) in the Eaton-Kortum model and 0.23 (0.14) and 0.39 (0.11) in the Melitz model, respectively.

The three sectors where modified comparative advantage matters most are {Manufacturing n.e.c.

0.49 (0.28), Food, beverages, tobacco 0.60 (0.27), Chemicals 0.73 (0.24)} and {Rubber and plastics

0.49 (0.16), Transport equipment 0.50 (0.15), Basic metals 0.62 (0.16)} in the Eaton-Kortum and

Melitz models, respectively.

In the right panel of Figure 10, we report the results of the experiments obtained using param-

21Note that for parametric models we cannot always let σs′ → σ` due to the constraint that σs− 1 < θs. To avoid
this, we let σs′ converge to σ1 which adheres to the constraint. Our results do not depend on this.

30



Figure 10: Eliminating Modified Comparative Advantage (sectoral heterogeneity)

eterized versions of the productivity distributions. The role of technology is apparently vastly

downward biased by the customary parameterizations across almost all sectors with sector aver-

ages in the Eaton-Kortum and Melitz frameworks being in the intervals (13%, 32%) and (5%, 22%),

respectively. Once again, there are also important qualitative differences to the results based on

the empirical distributions, as the parameterized distributions predict that {Leather 0.26 (0.09),

Chemicals 0.27 (0.10), Rubber and plastics 0.32 (0.19)} and {Basic metals 0.22 (0.13), Leather

0.22 (0.10), Rubber and plastics 0.22 (0.13)} are the sectors where modified comparative advantage

matters most in the Eaton-Kortum and Melitz model, respectively.

Finally, we examine how modified comparative advantage shapes exports and imports differently

for each country. We again calculate R(FD′) using benchmark and counterfactual trade shares on

the export and import sides for each country pooled across all sectors for each experiment. We

plot the results based on the empirical (nonparametric) productivity distributions in the left panel.

They suggest substantially smaller heterogeneity across countries relative to sectors. The average

R(FD′) lies in the interval (30%, 43%) and (34%, 55%) in the Eaton-Kortum and Melitz models,

respectively. In the right panel of Figure 11, we report the results obtained under the parame-

terized distributions. The results again indicate that the parameterizations induce a substantial

downward-bias in the importance of technology for trade. Across countries, the results vary in

the intervals (14%, 25%) and (8%, 23%) in the Eaton-Kortum and Melitz models, respectively.

Due to a substantially lower heterogeneity across sectors in the parametric version, the variance

within each country is also much lower under parameterized productivity distributions compared

to nonparametric ones.
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Figure 11: Eliminating modified comparative advantage (country heterogeneity)

Interestingly, comparing the role of technology – both in terms of modified absolute advantage

as well as in terms of modified comparative advantage – across the empirical and parameterized

versions of the experiments reveals that, on average, technology plays a more pronounced role

in the Melitz model than in the Eaton-Kortum model. While the role of technology is generally

substantially constrained under customary parametrizations, the constraints are more severe in the

Melitz model under the Pareto parameterization.

7.2 The gradient effect of technology on international trade

So far, we have emphasized the role of productivity differences in shaping patterns of international

trade levels across countries. We now turn to the discussion of how differences in productivity

distributions govern changes in trade outcomes in response to changes in variable trade costs. This

margin of the role of technology is at the heart of quantitative trade theory as it determines how

changes in policy and non-policy trade barriers affect trade and welfare. We refer to this margin

as the gradient effect of technology on trade. As before, we contrast the results derived under the

empirical productivity distributions and those derived under their parameterized versions in the

Eaton-Kortum and Melitz models.

We start with examining how changes in variable trade costs affect trade shares in each of the

two models considered in this work. In the Eaton-Kortum model this relationship is described in

equation (25) and the effect of a change in trade costs on trade shares is governed by the marginal

effect of trade costs on the distribution of goods prices from i in j which in turn is driven by the

slope of the respective CDFs about productivity at equilibrium quantities. Hence, to understand

the effect of trade costs on trade shares in the Eaton-Kortum model, we have to examine the

relationship between the slope of the respective CDFs describing productivity in i, s and variable

production costs for goods produced in i and shipped to j, csij ≡ csidsij , which we summarize by the
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relevant statistic W s
i (csij):

W s
i (csij) =

∫ 1

0
Ks
i d
(
1− F si

(
csij/p

))
, (41)

where Ks
i =

∏
k 6=i

(
1− F skj(p)

)
is a function of the productivity CDFs of all countries but i in

sector s. In order to define a meaningful support to plot this relationship we take the sector-

specific distribution of csij across country pairs in our data and determine 13 quantiles ranging

from the 1st to the 99th percentile for each sector. Then, we evaluate ln(W s
i (csij)) for all s and i

at each of those quantiles and compute the average value across all countries and sectors in our

sample to understand how the marginal response to changes in trade costs varies along the support

of ln(W s
i (csij)). Note that the face value at which ln(W s

i (csij)) is evaluated at each quantile is the

same across countries within a sector. In the left panel of Figure 12, we plot the shape of the

average ln(W s
i (csij)) when using the nonparametric productivity distributions versus their Fréchet

counterparts, respectively. Along with the average locus of ln(W s
i (csij)), we plot 95% confidence

intervals. The figure illustrates that for the nonparametric productivity distributions the sensitivity

of ln(W s
i (csij)) to changes in csij is substantially higher at higher quantiles of csij as compared to

lower ones. And it illustrates that the slope of the relationship is considerably flatter with the

Fréchet parameterization.

In the Melitz model, the effect of trade costs on trade shares is described by equation (34) and

is composed of the direct effect of τ sij on λsij (intensive margin) and the effect through φsij (ex-

tensive margin). As the intensive-margin effect is constant and identical for the parametric and

nonparametric versions, we focus on the extensive-margin effect that is a function of the slope of the

productivity CDFs at the respective equilibrium quantities and can be described by the following

relevant statistic:

V s
i (φs∗ij ) =

∫ 1

F si (φs∗ij )
φσ

s−1dF si (φ). (42)

To plot a meaningful average locus of this relationship across countries and sectors, we define a set

of quantiles of interest and obtain the sector-country specific values of φ at these quantiles. Then,

we evaluate ln(V s
i (φs∗ij )) at each quantile and compute an average across all sectors s and countries

i over these quantiles. Note that the face value of the quantile at which the function is evaluated

is different across i and s. Analogously to the Eaton-Kortum model, we plot the average locus of

ln(V s
i (φs∗ij )) across percentiles of φ to illustrate the generic relationship between them in the data.

The result is plotted in the right panel of Figure 12.
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Figure 12: Empirical marginal responses of W s
i (·) and V s

i (·)

Again, we see that the relationship is much flatter in the lower quantiles of φq than in the higher

ones, and in the Pareto-parameterized model it is much flatter in the upper quantiles than in

the nonparametric (empirical) quantitative model. Recall that the higher quantiles of φ tend to

characterize the part of the CDF support relevant for the exporting productivity cutoffs according

to most data around the world. Hence, the figure clearly illustrates that there is a considerable

sensitivity to changes in productivity in that part of the CDF, where it is highly relevant for the

extensive margin of exporting. In other words, using a parameterized Pareto-Melitz model will

likely downward-bias effects of fundamentals on equilibrium outcomes, in particular, to the extent

that they depend on extensive export-margin adjustments.

A general conclusion from this analysis in conjunction with insights from earlier work is the follow-

ing. First, in most countries on the globe exporting is a relatively rare activity across the firms in

a country and sector (see Bernard et al., 2007). Through the lens of the Eaton-Kortum model, one

would conclude that most firms in a country and sector are rarely successful in competing at global

markets and computing their export propensity over longer time intervals leads to a big mass of

firms with tiny export shares and propensities. This is consistent with our baseline analysis using

the Melitz model, where the average share of firms in i exporting to j 6= i is 0.3% and even the 99th

percentile of a distribution of these shares (F sij) is below 2.5%. All of this clearly indicates that

what is the relevant part of the productivity distribution when it comes to quantifying responses

to changes in trade costs is the right and not the left part of productivity distributions, and this is

where the relevance of productivity for general-equilibrium outcome is much stronger when using

distributions that are informed by details in the empirical data (i.e., nonparametric distributions)

rather than customarily parameterized versions thereof.
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7.2.1 Marginal responses of trade shares to changes in variable trade costs

Next, we calculate general-equilibrium-consistent predictions about the marginal responses of trade

shares to changes in trade costs via counterfactual simulations. For that, we conduct (I − 1)2S

experiments in each of the two models. In each experiment, we reduce the variable trade costs for

each importer by 20%. For the ease of exposition, from now on let us use τ sij to denote variable trade

costs in both models. Then, in each experiment the counterfactual trade costs for each importer i

and exporter j in sector s are calculated as follows:

τ s′ji = 0.8τ sji. (43)

Given these counterfactual trade costs we calculate marginal changes in trade shares as the log dif-

ference between counterfactual and benchmark trade shares ∆λsij(τ
s
ij) = log(λsij(τ

s′
ij ))−log(λsij(τ

s
ij)).

First, we pool the ∆λsij(τ
s
ij) across all countries and sectors and plot them against the benchmark

λsij . We form quantiles of the latter, which we call λq, and plot the average of ∆λsij(τ
s
ij) for any

quantile λq in the left panel of Figure 13. The marginal responses clearly vary across quantiles and

models, consistent with the intuition formed after inspection of Figure 12. They are decreasing in

absolute value as we move to higher quantiles of λsij . Hence, an equivalent reduction in trade costs

tends to lead to larger increases in λsij for country pairs and sectors with smaller trade shares in the

outset. These are exactly the country pairs where baseline equilibrium values of W s
i (·) and V s

i (·)
are to the right end of the abscissa in Figure 12 and marginal changes are substantially larger than

further to the left.

For comparison purposes, we plot the results of the same experiment for the parameterized model

versions as well. Here, the results indicate that the customary parameterizations of the Eaton-

Kortum and Melitz models significantly dampen the heterogeneity in the marginal responses of

trade shares across quantiles of λsij in the outset. Note that the very modest effect in the para-

metric version is a consequence of the constant direct relationship between trade shares and trade

costs (in logs) implied both by the Fréchet-parameterized Eaton-Kortum model and the Pareto-

parameterized Melitz model. The only source of heterogeneity across quantiles in Figure 13 stems

from general-equilibrium effects.
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Figure 13: Marginal responses of trade shares to changes in trade costs and outset-
trade-share quantile

Figure 14: Marginal responses of trade shares to changes in trade costs by sector
and outset-trade-share quantile

Next, we calculate average responses within each trade-share quantile by sector and plot them in the
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upper two panels of Figure 14. Again, the results calculated using the empirical (nonparametric)

productivity distributions suggest strong dependence of the magnitude of average responses on

the sectoral trade-share quantile in the outset. There is a large heterogeneity across and within

sectors but the overall pattern suggests that on average sectoral marginal responses in absolute

value are decreasing for higher trade-share quantiles in the outset. For comparison, we plot the

results based on the parameterized productivity distributions in the lower two panels of Figure

14. Due to different shape parameters in the Fréchet and Pareto distributions across sectors, the

magnitudes of the response differ slightly across sectors but less so across quantiles.

7.2.2 Welfare changes in response to changes variable trade costs

Using empirical rather than parameterized productivity distributions also has implications for the

welfare gains from trade resulting from the two canonical trade models that we consider. Ultimately,

the differences in marginal effects of reductions in trade barriers described above translate into

reductions in price indices and changes in overall costs and wages. We calculate counterfactual

gains from trade from a 20% cost reduction in τ sij for all i 6= j as follows:

Welfare Changei = 100%×

(
wi′∏S

k=1(P ki ′)α
k
i

∏S
k=1(P ki )α

k
i

wi
− 1

)
, (44)

where w′i and P k′i are counterfactual wages and aggregate price indices, respectively. We plot

counterfactual changes in welfare calculated under the empirical productivity distributions for the

countries at hand and the calibration for 2008 in the left panel of Figure 15. Across the board, the

welfare gains from trade are higher in the Melitz than in the Eaton-Kortum model with the data

at hand. On average, the gains between the models differ by 9.7 percentage points. The standard

deviation of the differences between the two models is 11.9 percentage points.

Figure 15: Welfare Gains from Trade
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We plot the results of the same experiment calculated under the Fréchet parameterization of the

productivity distributions in the Eaton-Kortum model and the Pareto parameterization in the

Melitz model in the right panel of Figure 15. Again, the results are very close to each other due

to the underlying isomorphism that comes in effect under the respective parameterizations. On

average, the gains are larger in the Eaton-Kortum model by 1.2 percentage points with a standard

deviation of 0.8. Here the differences again mainly stem from differences in the shape parameters

of the two parameterized distributions. We report the estimates of the shape parameters in the

Appendix.

7.2.3 Implications for model choice

Under customary macro-level assumptions, restrictive standard parameterizations of productivity

distributions lead to quantitatively similar or even identical relationships between trade outcomes

in response to changes in trade costs, e.g., intra-trade share and welfare changes, as demonstrated

in Arkolakis et al. (2012). This isomorphism across different models of international trade makes

the micro foundations irrelevant to a certain degree such that Fréchet- and Pareto-parameterized

versions of the Eaton-Kortum and Melitz models are often used interchangeably.22 This is in spite

of the fact that these two models feature fundamentally different competition types and selection

effects. In this section, we show that the isomorphism across different models of trade is partly

an artifact of specific parameterizations of the productivity distributions and that under empirical

productivity distributions there are vastly different micro-to-macro implications between the Eaton

and Kortum (2002) and Melitz (2003) models of trade.

Figure 16: Marginal responses in the nonparametric Eaton-Kortum vs. Melitz models
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We start with examining the differences in the marginal responses of trade to a 20% reduction in

international trade costs across the two models. Using the same notation as in the previous section,

we plot the results under the empirical productivity distributions for all covered country-pairs and

22Melitz and Redding (2015) discuss how using a bounded Pareto instead of an unbounded Pareto distribution
breaks this isomorphism between the Melitz and other models.
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sectors in our data in the left panel of Figure 16. The figure suggests that the two models have

largely different quantitative predictions about how trade flows would change in response to the

counterfactual trade liberalization. The correlation coefficient between ∆λsij(τ
s
ij) calculated in the

nonparametric Eaton-Kortum and Melitz models is 0.5. On average, the marginal response in the

latter model is 0.54, which is higher than 0.45 in the former one. We contrast these results with

the ones under the customary parameterized model versions of the productivity distributions in the

right panel of Figure 16. The differences in the predictions of the two models under the empirical

and parameterized distributions are obviously stark as the correlation between the predictions in

the Eaton-Kortum and Melitz models is unity due to the aforementioned isomorphism under the

parameterized distributions. There are also important qualitative differences as the parameterized

versions imply a relatively more acute response in the Eaton-Kortum than in the Melitz model.

Note that the quantitative differences between the parameterized versions stem from the shape

parameters of the Fréchet and Pareto distributions that are different across models in this paper

because they are estimated from micro data as opposed to the common practice of using macro data

and in particular using trade-share responses to trade-cost changes. We report these parameters in

the Appendix.

8 A look at the data: Suggestive evidence for the importance of

micro-to-macro implications in macro data

In the analysis of the previous section, we focused on counterfactual predictions of calibrated

models, while highlighting micro-to-macro implications of using empirical productivity distributions

for trade shares and welfare relative to those under commonly parameterized model versions. One

important insight was that there was a much stronger heterogeneity of the responses in trade shares

in terms of the level of trade shares in the outset in the quantitative models based on the empirical

productivity distributions of firms than with the parameterized distributions.

We present two types of analysis. First, we consider patterns of (tariff-change-scaled) changes in

trade shares in the data between 1999 and 2008. In addition to the data used in the calibration

for 2008, we use data for trade flows in 1999 together with import-tariff rates for our sample of

countries and sectors. We then compute scaled changes in trade shares from 1999 to 2008 for sector

s and country pair ij as follows:

∆λsij(t
s
ij) = log

(
λsij(2008)

λsij(1999)

/
tsij(2008)

tsij(1999)

)
for each s, (45)

where tsij denotes the average tariff rate applied by country j on imports of h from i.23 We plot

scaled changes ∆λsij(t
s
ij) against quantiles of the trade-share levels in 1999 in Figure 17. The left and

23We aggregate product-level tariff lines to unweighted sector-level average import tariffs using data from the
World Integrated Trade Solutions (WITS).
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right panels present tariff-scaled changes in trade shares when pooling the data across all products

and when pooling them within 13 sectors, respectively.

Figure 17: Normalized unconditional changes in trade shares in response to tariff
changes (data)

An inspection of Figure 17 suggests the following insights. There is a high degree of dependence

of the tariff-normalized changes in trade shares between 1999 and 2008 on the trade-share levels

in 1999 and the degree of variation and pattern in this relationship is similar to the results that

we saw in the counterfactual analysis of marginal trade-cost effects in Figures 13 and 14. This

holds true for the data pooled across all sectors as well as within sectors.24 Clearly, looking at

unconditional data patterns is not a formal test, but we interpret the similarities in patterns of

correlations between trade-share changes and outset-trade-share levels as reassuring.

To make more formal comparisons between the data and the models’ predictions, we ran coun-

terfactual experiments by using the full-fledged general-equilibrium models when imposing tariff

changes as observed between 1999 and 2008 while keeping all other primitives as in the 2008 bench-

mark. We then categorize changes based on quantiles of the model-implied trade shares in 1999 to

produce model-consistent data as presented in Figure 17 for each of the four versions of the model.

We regress average changes in each quantile of trade shares observed in the data on the correspond-

ing changes predicted by the Eaton-Kortum and Melitz models when using empirical productivity

distributions as well as their parameterized versions. We report the explained variation of each of

these four regressions (R2) and present it in Table 6.

The results in Table 6 suggest that the predictions of the Eaton-Kortum and Melitz models under

the empirical productivity distributions significantly outperform the predictions under the param-

eterized distributions both when we use data pooled across all sectors as well as within the average

sector. We can conclude that both models considered in this work predict very strong heterogeneous

responses of trade outcomes to changes in trade costs when informed by empirical productivity dis-

24Note that the change in trade costs was homogeneous in Figures 13 and 14, while it is heterogeneous here.
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Table 6: Data vs. Models’ Predictions

Pooled Average Average across sectors

EK + Empirical 0.90 0.58
Melitz + Empirical 0.90 0.65
EK + Frechet 0.70 0.50
Melitz + Pareto 0.70 0.47

tributions which stands in stark contrast to models using customary parameterized productivity

distributions which predict much more homogeneous responses.

In a next step, we evaluate the models’ predictions using, perhaps, the most popular empirical tool

in international trade – the gravity equation. In particular, both models predict that under the

empirical productivity distributions the marginal responses of trade shares to changes in bilateral

trade barriers are higher for country pairs where initial trade shares are lower. We assess how

these predictions square with the data by using the gravity equation, allowing for quantile-specific

distance coefficients in two ways. First, we run a standard version of the gravity equation while

allowing the coefficient on the (log) bilateral distance variable to vary across quantiles of the trade

data. As classifying quantiles on λsij may lead to endogeneity problems, we use lagged data on trade

shares (from 1999) to form quantiles, Q, while we use data from 2008 as our dependent variable.

We then run the following regression:

log λsij(2008) =
∑
Q

Q(Q)ξs(Q) ln distanceij + ZsijΛ + εsij for each s, (46)

where Zsij is a vector of controls that consists of exporter and importer fixed effects and εsij is the

disturbance term. Also, Q denotes the data quantile and Q(Q) is an indicator function, which is

unity whenever λsij(1999) ∈ Q and zero otherwise. We report the estimates of ξs(Q) in Figure 18.

Consistent with the predictions of the two models under non-parametric productivity distributions,

the elasticity of trade shares to bilateral distance is decreasing (in absolute terms) across quantiles.

This holds both when we estimate the gravity equation using pooled data across sectors (left panel)

and when we run it by sector (right panel). Note that the results in Figure 18 can also be potentially

explained by a non-CES structure of demand as in Carrère et al. (2020). We, however, emphasize

that the pattern of a decreasing elasticity of trade shares to bilateral distance across trade-share

quantiles observed in the data is generated by using empirical productivity distributions even under

CES preferences.

In order to check how well the reduced-form gravity estimates are aligned with the predictions

from our model, we relate the model-implied responses from a 20% reduction in trade costs to an

equivalent response in the reduced form (which corresponds to −20ξ̂s(Q)). The resulting measures

of explained variation (R2) in Table 7 suggest that the reduced-form estimates of the gravity

equation align better with the predictions of the Eaton-Kortum and Melitz models under the
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empirical productivity distributions compared to their parameterized counterparts.

Figure 18: Estimates of distance elasticities across trade-share quantiles

Alternatively, we use a quantile estimator where quantile thresholds are determined in estimation

as opposed to lagged values of λsij . For computational reasons, we exclude the exporter-sector

and importer-sector fixed effects here and focus on the unconditional quantile-specific correlation

between log distance and λsij . We use the following quantile estimator for each sector:

ξ̂s(Q) = argmin
ξs∈Rk

∑
ij

ρs(Q)
[
ln(λsij)− ξs ln(distanceij)

]
for each s, (47)

where ρs(Q) is a linear ”check function”. We obtain quantile-specific distance coefficients for each

sector s. As explained above, we calculate the R2 between the predictions of the two models

regarding the response of trade shares to a 20% reduction in variable trade costs both under

empirical productivity distributions as well as under their parametric counterparts and the reduced-

form prediction corresponding to −20ξ̂s(Q). We report the results in the lower panel of Table 7.

Again, the correlations between the models’ predictions and the estimated distance coefficients are

bigger under empirical productivity distributions than those based on customary Fréchet and Pareto

Table 7: Gravity coefficients vs. models’ predictions

Estimator Model Pooled Average Average across sectors

OLS

EK + Empirical 0.94 0.85
Melitz + Empirical 0.90 0.59
EK + Fréchet 0.41 0.48
Melitz + Pareto 0.41 0.49

Quantile

EK + Empirical 0.91 0.61
Melitz + Empirical 0.85 0.37
EK + Fréchet 0.32 0.27
Melitz + Pareto 0.32 0.27
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parameterizations. While both regressions in (46) and (47) admittedly have certain limitations, we

find it reassuring that the corresponding results are consistent with each other and that they both

suggest that the predictions under the empirical productivity distributions align relatively better

with the data.

9 Conclusion

This paper quantifies the role of distributional productivity differences as drivers of international

trade flows. It employs firm-level productivity parameters to formulate empirical country-sector-

specific productivity distributions and uses them to inform two canonical models of international

trade that feature heterogeneous firms. We find that depending on the underlying model at hand,

absolute productivity differences across countries on average explain 15%-21% of the variation

in international trade shares, whereas relative productivity differences across sectors on average

account for 39-47%. This suggests that technological differences play a quantitatively important

role in shaping trade patterns and often constitute the most important driver of trade.

We also find that using empirical productivity distributions leads to a substantially larger het-

erogeneity of marginal responses of trade shares to changes in variables trade costs, which has

important implications for the predictions of the welfare gains from trade, the macro-based model

isomorphism with respect to changes in trade costs, and the gravity equation. We confirm the

predictions obtained under empirical productivity distributions using unconditional data on tariffs

and trade flows as well as the coefficients from the gravity equation.

This paper also highlights the importance of paying attention to the empirical distributions of

firms in data when informing quantitative models. We detect large deviations of such empirical

distributions across 13 sectors and 15 countries from a host of customary functional forms. We use

Kolmogorov-Smirnov statistics and reject the hypothesis that country-sector-specific productivity

distributions can be parameterized under a single parametric family. We show that attempts

to parameterize the distributions under the Fréchet and Pareto families, which dominate current

quantitative work, understate the role of productivity differences for trade outcomes.

We examined the cross-sectional variation in productivity distributions across countries in different

sectors while treating them as given and exogenous. It would be potentially fruitful to use our

estimates to examine factors such as institutions that shape country-sector-specific productivity

distributions. We leave this for future research.
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Appendix A: Two-country models of trade

In Section 2, we used two-country versions of the Eaton-Kortum and Melitz models. Here, we
provide details on the fundamentals that we used in these two models. The notation follows the
main text. We solve the Eaton-Kortum model using the following equations:

Fij(p) = 1− Fi
(
wiτij
p

)
λij =

∫ 1

0

∏
k 6=i

(1− Fkj(p)) dFij(p)

Pi =

∫ 1

0
pdFi(p)

wi =
∑
j

λij(Ljwj)/Li.

The Melitz model is described using the following set of equations:

(φ∗ij)
1−σ =

(Pj)
σ−1(Ljwj)

σwifij

(
σ

σ − 1
wiτ

s
ij

)1−σ

P 1−σ
j =

I∑
i=1

Ni

(
σ

σ − 1
wiτij

)1−σ ∫ 1

Fi(φ∗ij)
φσ−1dFi(φ)

λij = Ni(Pj)
σ−1

(
σ

σ − 1
wiτij

)1−σ ∫ 1

Fi(φ∗ij)
φσ

s−1dFi(φ)

wi =
∑
j

λij(Ljwj)/Li.

The primitives that we use are described in Table 8:

Table 8: Model Primitives

L1 L2 τ11 τ12 τ21 τ22 f11 f12 f21 f22 N1 N2 σ

100 100 1 2 2 1 0.1 1 1 0.1 100 100 2

To illustrate different dimensions of productivity distributions and how they can differ across coun-
tries, we use Richards’ curve for generalized logistic functions in Richards (1959) to generate CDFs
according to the following equation:

F (z) =
1(

1 + {Location}e−{Scale} ln(z)
)− 1
{Shape}

.

The advantage of this approach is that the three parameters independently govern the three margins
of CDFs location, scale, and shape. In the outset, we fix all parameters to unity.
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Appendix B: Alternative measures of firm productivity

The main analysis of this paper relies on productivity estimates that are based on the estimation
of country-sector-specific production functions following the approach by Ackerberg et al. (2015).
The conclusions of this paper remain however valid if we use alternative measures of productiv-
ity. We show this by employing two different approaches to obtain productivity estimates. First,
we constrain production functions to have the same Cobb-Douglas production function parame-
ters across countries. Second, we alternatively take a widely-used ad-hoc measure of productivity
which is value added per worker. In order to show that the underlying patterns of productivity
distributions across countries and sectors our analysis is based on also hold under these alternative
estimation procedures, we correlate each of the alternative levels of productivity with our baseline
measure across sectors and countries for each quantile of the distributions. We present two al-
ternative correlation measures, the standard Pearson correlation coefficient as well as Spearman’s
rank correlation coefficient for both alternative measures of productivity in Figure 19. The figure
confirms that the alternative measures produce a very comparable ranking of productivity across
countries and sectors in each quantile of the distribution with correlation coefficients being largely
within the interval of 0.85-0.90. A second analysis demonstrating that the identified patterns across
distributions – which eventually drive the main results of the paper – are largely comparable for
alternative distributions, is presented in Figures 20 and 21. The patterns of Kolmogorov-Smirnov
statistics across country-sector-specific distributions resembles the pattern presented in Figure 6 in
the main text.

Figure 19: Correlation of alternative measures of productivity across countries
and sectors for each quantile
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Figure 20: Illustration of CDFs and Kolmogorov-Smirnov statistics – Estimation
based on sector-specific production functions

Figure 21: Illustration of CDFs and Kolmogorov-Smirnov statistics – Estimation
based on value added per worker

Appendix C: Quantitative solution methods and calibration

In this Appendix, we describe the solution algorithms that we use to calibrate and solve the Eaton-
Kortum and Melitz models. The key difference between the techniques used with the parametric
versus the non-parametric distributions is the treatment of φ in F si (φ). In the former case, φ is are
viewed as continuous argument of F si (φ), and the CDF and its truncations can be readily calculated
analytically.

We focus our attention on the case, where functional form of F si (φ) is not known. There, the
empirical CDFs are represented on a model-specific line with K segments, where each average level
φ(K) corresponds to a specific value of F si (φ(K)). We choose the number of segments K in the
Eaton-Kortum and Melitz models to be 10,000 and 110,010, respectively. These numbers were
chosen to minimize computational time subject to the constraint that the discretized versions of
the distributions lead to the same quantitative outcome as their continuous counterparts, when
using the Fréchet and Pareto parameterizations. We conclude that the grid is sufficiently fine as
long as adding more grid points does not change the outcomes and all endogenous variables are
identical in two equilibria.
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A computational challenge that discretization of F si (φ) entails is calculating integrals in Equations
(25), (27), (33), and (34). For that, we use the MATLAB functions trapz and cumtrapz that are
based on trapezoidal numerical integration. Given that we make sure that the numerical grid is
sufficiently populated, the accuracy of these numerical functions is very high such that the values of
the integrals computed numerically is negligibly small relative to the analytical counterparts with
the customary parameterizations.

The overall solution algorithms are based on contraction mapping and are sketched out in Figure
22. As the two models share common equations as given in Section 5.1 and otherwise involve the
model-specific equations in Sections 5.2 and 5.3, we are able to present the algorithms in a single
scheme. Clearly, the models are always solved separately.

Figure 22: Sketch of the solution algorithms
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Appendix D: Estimated parameters across parametric distribution
families

Figures 9 and 10 present summary statistics of the estimated parameters when fitting the micro
data of estimated productivity to various parametric families using QQ estimation. For each family,
we present the estimates averaged over sectors across countries (see Table 9) and averaged over
countries across sectors (see Table 9). We present estimates based on a flexible estimation that
allows both parameters to vary at the country-sector level in the first row and a more constrained
estimation where shape parameters (θsi ) are only sector-specific in the second row, respectively.
Note that, even though bsi is country-sector specific under both estimation procedures the estimated
parameters bsi that guarantee a best fit might be different under the two procedures.
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Table 9: Parameter estimates for common parametric distribution functions – aver-
ages over sectors across countries.

Family BGR CHN CZE DEU ESP EST FIN FRA HUN ITA KOR PRT ROM SVN SWE

bsi |θsi and bsi |θs

Fréchet 0.00 0.00 0.01 0.06 0.00 0.00 0.01 0.01 0.03 0.01 0.02 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Gumbel 0.03 0.06 0.06 0.24 0.07 0.03 0.12 0.18 0.09 0.16 0.10 0.03 0.02 0.08 0.09
0.01 0.06 0.05 0.32 0.05 0.02 0.13 0.18 0.12 0.17 0.11 0.01 -0.00 0.07 0.08

Log Logistic 0.03 0.07 0.06 0.29 0.08 0.04 0.14 0.20 0.11 0.18 0.11 0.04 0.03 0.09 0.10
0.03 0.07 0.06 0.29 0.08 0.04 0.14 0.20 0.11 0.18 0.11 0.04 0.03 0.09 0.10

Log Normal -3.44 -2.66 -2.80 -1.31 -2.58 -3.31 -2.06 -1.64 -2.27 -1.73 -2.23 -3.27 -3.64 -2.44 -2.29
-3.44 -2.66 -2.80 -1.31 -2.58 -3.31 -2.06 -1.64 -2.27 -1.73 -2.23 -3.27 -3.64 -2.44 -2.29

Pareto 0.02 0.04 0.03 0.15 0.05 0.02 0.08 0.14 0.04 0.11 0.05 0.02 0.02 0.05 0.07
0.02 0.04 .04 0.17 0.05 0.02 0.08 0.12 0.06 0.11 0.06 0.02 0.02 0.05 0.06

Power 0.08 0.14 0.13 0.57 0.12 0.08 0.24 0.29 0.27 0.29 0.24 0.06 0.04 0.14 0.15
0.06 0.12 0.11 0.50 0.13 0.07 0.23 0.34 0.18 0.30 0.19 0.07 0.04 0.15 0.17

Weibull 0.05 0.10 0.09 0.39 0.09 0.05 0.17 0.23 0.16 0.22 0.15 0.05 0.03 0.11 0.12
0.04 0.09 0.08 0.37 0.10 0.05 0.17 0.25 0.14 0.22 0.14 0.05 0.03 0.11 0.13

θsi and θs

Fréchet 1.69 1.96 1.85 2.45 3.49 2.17 2.77 4.28 1.52 2.95 1.79 2.99 2.76 2.87 3.48
2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60

Gumbel -0.03 -0.04 -0.03 -0.20 -0.02 -0.02 -0.06 -0.06 -0.10 -0.06 -0.07 -0.02 -0.01 -0.03 -0.03
-0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

Log Logistic 2.51 2.87 2.78 3.58 5.10 3.23 4.12 6.26 2.26 4.38 2.66 4.38 4.04 4.23 5.18
3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

Log Normal 0.75 0.64 0.66 0.56 0.36 0.60 0.47 0.32 0.85 0.42 0.69 0.43 0.46 0.45 0.36
0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Pareto 1.20 1.40 1.28 1.75 2.50 1.52 1.95 3.06 1.06 2.08 1.27 2.13 1.96 2.04 2.45
1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84

Power 1.31 1.47 1.50 1.84 2.60 1.72 2.17 3.20 1.20 2.30 1.39 2.25 2.08 2.19 2.73
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Weibull 1.78 2.01 2.00 2.51 3.57 2.31 2.93 4.38 1.61 3.11 1.88 3.07 2.84 2.98 3.68
2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71

Notes: We estimated parameters based on QQ estimation as detailed in section 4.1. Here, we present averages over
sectors across countries. For each family and parameter, the first row corresponds to a flexible estimation approach
where both bsi and θsi are allowed to vary across countries and sectors. In the second row, θs is held constant across
countries within sectors.
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Table 10: Parameter estimates for common parametric distributions – averages over
countries across sectors.

Family 15t16 17t18 19 20 21t22 24 25 26 27t28 29 30t33 34t35 36t37

bsi |θsi and bsi |θs

Fréchet 0.01 0.03 0.02 0.00 0.01 0.03 0.00 0.01 0.00 0.00 0.01 0.01 0.01
0.01 0.01 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Gumbel 0.08 0.11 0.13 0.07 0.09 0.11 0.09 0.10 0.08 0.09 0.09 0.08 0.07
0.08 0.11 0.13 0.07 0.09 0.11 0.09 0.10 0.08 0.09 0.09 0.08 0.07

Log Logistic 0.09 0.13 0.15 0.08 0.10 0.14 0.10 0.12 0.09 0.10 0.10 0.09 0.08
0.09 0.13 0.15 0.08 0.10 0.14 0.10 0.12 0.09 0.10 0.10 0.09 0.08

Log Normal -2.63 -2.41 -2.29 -2.75 -2.52 -2.24 -2.48 -2.40 -2.59 -2.46 -2.48 -2.60 -2.80
-2.63 -2.41 -2.29 -2.75 -2.52 -2.24 -2.48 -2.40 -2.59 -2.46 -2.48 -2.60 -2.80

Pareto 0.05 0.06 0.08 0.05 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.04
0.05 0.07 0.09 0.05 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.04

Power 0.18 0.27 0.27 0.12 0.16 0.29 0.16 0.21 0.14 0.16 0.18 0.16 0.14
0.17 0.23 0.25 0.12 0.15 0.27 0.16 0.21 0.14 0.16 0.17 0.15 0.13

Weibull 0.12 0.18 0.19 0.09 0.12 0.19 0.12 0.15 0.11 0.12 0.13 0.12 0.10
0.12 0.17 0.19 0.09 0.12 0.18 0.12 0.15 0.11 0.12 0.13 0.11 0.10

θsi and θs

Fréchet 2.22 2.18 2.51 2.91 3.20 1.89 2.93 2.31 3.24 3.03 2.39 2.46 2.54
2.22 2.18 2.51 2.91 3.20 1.89 2.93 2.31 3.24 3.03 2.39 2.46 2.54

Gumbel -0.05 -0.09 -0.07 -0.03 -0.04 -0.12 -0.03 -0.06 -0.03 -0.05 -0.04 -0.04 -0.04
-0.05 -0.09 -0.07 -0.03 -0.04 -0.12 -0.03 -0.06 -0.03 -0.05 -0.04 -0.04 -0.04

Log Logistic 3.22 3.24 3.72 4.31 4.71 2.78 4.36 3.38 4.77 4.47 3.55 3.65 3.74
3.22 3.24 3.72 4.31 4.71 2.78 4.36 3.38 4.77 4.47 3.55 3.65 3.74

Log Normal 0.59 0.60 0.57 0.45 0.44 0.69 0.45 0.58 0.43 0.46 0.56 0.59 0.55
0.59 0.60 0.57 0.45 0.44 0.69 0.45 0.58 0.43 0.46 0.56 0.59 0.55

Pareto 1.60 1.53 1.77 2.06 2.27 1.35 2.06 1.65 2.30 2.14 1.68 1.74 1.80
1.60 1.53 1.77 2.06 2.27 1.35 2.06 1.65 2.30 2.14 1.68 1.74 1.80

Power 1.62 1.71 1.95 2.25 2.44 1.43 2.30 1.73 2.47 2.33 1.87 1.91 1.93
1.62 1.71 1.95 2.25 2.44 1.43 2.30 1.73 2.47 2.33 1.87 1.91 1.93

Weibull 2.24 2.31 2.64 3.05 3.32 1.95 3.10 2.37 3.36 3.16 2.52 2.59 2.63
2.24 2.31 2.64 3.05 3.32 1.95 3.10 2.37 3.36 3.16 2.52 2.59 2.63

Notes: We estimated parameters based on QQ estimation as detailed in section 4.1. Here, we present averages over
countries across sectors. For each family and parameter, the first row corresponds to a flexible estimation approach
where both bsi and θsi are allowed to vary across countries and sectors. In the second row, θs is held constant across
countries within sectors.
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