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Abstract

Carry trade refers to a risky arbitrage in interest rate differentials between two currencies.

Persistent excess carry trade returns pose a challenge to foreign exchange market efficiency.

Using a data set of ten currencies between 1990 and 2017, we find: (i) a machine learning

model, long short-term memory (LSTM) networks, forecast carry trade returns better than

linear and threshold regressions based on economic fundamentals; and (ii) excess carry trade

returns deteriorate after the 2007–2008 global financial crisis in LSTM networks and other

model forecasts, indicating that the uncovered interest rate parity may still hold in the long run.
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1 Introduction

Carry trade is a risky arbitrage based on interest rate differentials between two currencies. While

the persistent excess carry trade returns seem to challenge the efficient market hypothesis, there is

also evidence that uncovered interest parity (UIP) may hold in the long run, and thus the excess

carry trade returns will eventually reverse.1

This paper contributes to the literature on carry trade returns in two dimensions. First, we

introduce long short-term memory (LSTM) networks—a machine learning model for time series

forecasting—to predict carry trade returns and find that LSTM networks outperform commonly

used models. To our knowledge, this paper is the first to explore the application of LSTM networks

in a carry trade return forecast.2 As a deep learning model, LSTM networks allow long- and short-

term information to be optimally used in carry trade return prediction, as opposed to Colombo et al.

(2019), who employ support vector machines to predict carry trade direction. Second, we find that

carry trade returns deteriorate after the 2007–2008 global financial crisis in LSTM networks and

in other models as the interest rate differentials shrink to near zero, consistent with the estimation

in Accominotti et al. (2019). Our findings provide supportive evidence that we may not be able to

reject the UIP.

Specifically we construct a monthly data set in G10 currencies (Australia, Canada, Germany,

Japan, Norway, New Zealand, Sweden, Switzerland, the U.K., and the U.S.) between 1990 and

2017. We then train the LSTM networks model with data and make predictions. Hochreiter and

Schmidhuber (1997) first developed LSTM networks that can “memorize” the long-term data pat-

tern and determine how the input in every period can “enter” into the memory process. Therefore

LSTM networks capture more data information than linear or threshold models and thus can po-

tential improve return forecasts. In a multi-period model structure, LSTM networks include input,

hidden, and output layers in each period. The key mechanism is memory cells in the hidden layer

that transmit information between periods. In a memory cell, a forget gate, an input gate, and an

output gate function determine how the information from previous periods can be transmitted, how

1See Burnside et al. (2008).
2See Gu et al. (2019) and Davis et al. (2020) on machine learning applications for time series problems.
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the input can be included, and how the information can be sent out respectively. The performance

of LSTM networks dominates other popular models for carry trade returns. All model forecasting

results show that the excess carry trade returns are lower after the 2007–2008 global crisis.

2 Data, carry trades, and model

Data. The monthly data set that spans from January 1990 to October 2017 includes the exchange

rate and the one-month risk-free interest rate data from Datastream, and the consumer price index

data from FRED Economic Data for G10 countries. Those countries’ currency trading volume

prevails in the foreign exchange market, and all countries take the floating exchange rate regime

and allow free capital mobility.

Carry trade return. We follow Jordan and Taylor (2012) to construct a carry trade return

estimation framework. Setting the U.S. as the home country in a currency pair, the ex-post nominal

excess return for a carry trade st+1 is

st+1 = ∆et+1 + (i∗t − it), (1)

where ∆et+1 is the logged exchange rate (the home currency price of one unit of foreign currency)

difference, and it and i∗t are home and foreign one-period, risk-free interest rates. The UIP implies

that Et(st+1) = 0.

We further re-express the carry trade return in real terms. We define the real exchange rate

as qt+1 = q̄ + et+1 + (p∗t+1 − pt+1), where q̄ is the mean of qt, and pt+1 and p∗t+1 are the logged

aggregate prices home and abroad. Under purchasing power parity (PPP), real exchange rate qt

converges to q̄ and thus qt − q̄ is stationary. If πt+1 is the inflation rate and the real interest rate is

rt = it − πt+1, the carry trade return in equation (1) can be written as

st+1 = ∆qt+1 + (r∗t − rt). (2)

Given that ∆et+1 and ∆qt+1 are stationary, equations (1) and (2) can be viewed as an evolution
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Fig. 1: A memory cell in LSTM networks

from a stationary system:

∆vt+1 =
[
∆et+1, π

∗
t+1 − πt+1, i

∗
t − it

]′
, (3)

where the cointegration vector is et + p∗t − pt = qt − q̄, the deviation from PPP.

LSTM networks. We utilize LSTM networks to estimate the carry trade return. The LSTM

networks employ the long-term data pattern and determine how the new information in every pe-

riod can enter the model. In LSTM networks, time period t spans from 0 to T . In every period,

the model consists of an input layer, one or more hidden layers, and an output layer. The input

layer includes the explanatory variables for the carry trade return: ∆et, π∗t − πt, i∗t − it and qt − q̄,

t = 0, 1, · · · , T − 1. The output layer generates the prediction for exchange rate êt+1. The hidden

layer is the key structure of LSTM networks as it consists of memory cells that determine how

information can be injected and carried to the next period. Below we first explain the information

transmission within a memory cell, then show the full model structure.

We elaborate the mechanism in a memory cell in Figure 1. There are three types of gates

that control how information flows in a memory cell: the input gate, the forget gate, and the

output gate. Denoting the hidden state as ht and the input as xt+1, we define the combined input
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as mt+1 = [ht, xt+1]. First, the forget gate activation ft+1 determines how information in the

combined input can be transmitted:

ft+1 = σ (Wfmt+1 + bf ) , (4)

whereWf is the forget gate weight, bf is its associated bias, and the sigmoid function σ(s) = 1
1+e−s

ranges between 0 and 1. The forget gate passes little information to period t+ 1 if ft+1 is close to

0. Second, the input gate activation int+1 is also a sigmoid function:

int+1 = σ (Winmt+1 + bin) , (5)

where Win is the input gate weight and bin is the bias vector. The input gate allows more infor-

mation to “enter” if int+1 is close to 1. Third, denoting the cell state as c, its evolution process

follows

gt+1 = tanh (Wgmt+1 + bg) , (6)

ct+1 = ft+1 · ct + int+1 · gt+1, (7)

where gt+1 is the cell state candidate, Wg and bg are the weight and bias respectively, and the state

activation function tanh(s) = e2s−1
e2s+1

with range [-1,1] guarantees a reasonable cell state value.

Overall, the forget gate ft+1 controls how the cell state ct passes into ct+1, and the input gate int+1

controls how the combined inputs are incorporated into ct+1. Finally, the output gate ot+1 and the

hidden state ht+1 are

ot+1 = σ (Womt+1 + bo) , (8)

ht+1 = ot+1 · tanh (ct+1) , (9)

where Wo is the output gate weight and bo is its bias vector. The output gate determines how the

information in the cell state ct+1 can be transmitted into the new hidden state.
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Fig. 2: LSTM networks in multiple periods

Figure 2 illustrates how LSTM networks evolve over periods. LSTM networks update the cell

state and the hidden state from ct and ht to ct+1 and ht+1 with the input xt+1, and generate the

output yt+1. This process iterates until the last period t = T .

During the evolving process, the model minimizes the loss function in the data. Given the out-

put is the exchange rate movement êt+1, the mean squared error between the actual and predicted

values is a natural loss function. We choose the Adam algorithm (Kingma, et al., 2014) to mini-

mize the loss function, because it is computationally efficient and performs well for a large number

of parameters. Following Fischer and Krauss (2018), the number of parameters in LSTM layers is

4h(j+h)+4h, where h and j are the numbers of hidden units and input features respectively. The

term 4h(j+h) is the number of parameters in four weight matrices, and the term 4h is the number

of parameters in bias.

Predicting carry trade returns using LSTM networks. We divide the sample into the training

set (in sample) from 1990 to 2011,3 and three test windows (out of sample): 2012–2015, 2013–

2016, and 2014–2017. As the training set includes the 2007–2008 global financial crisis, LSTM

networks can adapt the abnormal carry trade returns during the turmoil periods into model training.

We also split out the validation set (between 2010 and 2011) from the training set to avoid the

potential over-fitting problem.4 In the test data, we employ the rolling window strategy with one-

step ahead forecast.

3A rule of thumb for splitting between training and test sets is 5:1. Results are robust with other splitting.
4Results are consistent under an alternative 80% training versus 20% validation rule.
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Following Jorda and Taylor (2012), we build an equally weighted portfolio with 1/N(N =

9) portion of investment on each foreign currency, because the equally weighted strategy makes

comparing portfolio performance in different models possible. Given the model forecast êt+1,

the investors can long or short each currency to rebalance the equal-weighted portfolio. Then we

calculate the realized return from the exchange rate data.

In summary, the LSTM networks have four input features ∆et, π∗t − πt, i∗t − it, and qt − q̄

(all are stationary after unit root tests), and we choose time step 2 as the best fit from time step

candidates 1 to 5. The hidden layer has eight hidden neurons, corresponding to 416 parameters,

while there are 2097 observations in the training sample. Zhang et al. (2017) show that neutral

networks allow a relatively high ratio of the number of parameters over that of observations. The

output layer contains two neurons as a standard configuration.

3 Results

In this section, we first compare the LSTM performance with widely used models for carry trade

returns and then investigate the resource of performance difference.

We choose random walk, vector autoregression (VAR), and the threshold vector error correc-

tion model (TECM) as the benchmark models to assess LSTM networks’ forecasting ability. The

random walk model assumes that the exchange rate movement ∆et+1 is independently and iden-

tically distributed. In contrast, the VAR model with the optimal lag as one period assumes that

economic fundamentals are capable of forecasting future exchange rate movement. The TECM

(one period as the optimal lag order) with the demeaned real exchange rate qt− q̄ as the cointegra-

tion variable assumes parsimonious thresholds—whether the interest rate differential and the real

exchange rate are above their median values.

Table 1 displays the model performance comparison in forecasting carry trade returns. In

all three rolling windows, LSTM networks dominate the three other models. The Diebold and

Mariano (1995) test results show that LSTM networks are more accurate in return predictions.5

5The null versus alternative hypotheses are that the model (random walk, VAR, or TECM) has the same forecast
accuracy versus that it has less forecast accuracy with LSTM networks.
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Table 1: Carry trade return

Random Walk VAR TECM LSTM
Realized profits 2012–2015
Mean -0.0009 -0.0008 -0.0006 0.0014
Std. dev. 0.0177 0.0116 0.0118 0.0100
Skewness 0.1053 -0.4649 -0.5411 0.2139
Sharpe ratio (annual) -0.1863 -0.2750 -0.1806 0.4636
Gain/loss 0.8550 0.8698 0.8720 1.4427
D-M test p-value 0.0000 0.0000 0.0001 -
Realized profits 2013–2016
Mean -0.0004 -0.0003 -0.0010 0.0028
Std. dev. 0.0181 0.0106 0.0121 0.0077
Skewness 0.0328 -0.3385 -0.4850 0.5110
Sharpe ratio (annual) -0.0807 -0.1262 -0.3181 1.2413
Gain/loss 0.9505 0.9189 0.7817 2.4960
D-M test p-value 0.0000 0.0000 0.0001 -
Realized profits 2014–2017
Mean 0.0009 -0.0003 -0.0011 0.0024
Std. dev. 0.0183 0.0104 0.0134 0.0073
Skewness -0.1544 -0.2916 -0.3871 0.9213
Sharpe ratio (annual) 0.1702 -0.1091 -0.3004 1.1308
Gain/loss 1.1022 0.9141 0.7891 2.5344
D-M test p-value 0.0000 0.0000 0.0000 -

The LSTM networks in 2012–2015 generate an average monthly return of 14 basis points with

low standard deviation and positive skewness, which is better than the negative returns from other

models. The average return, Sharpe ratio, and gain/loss ratio are higher in 2013–2016 and 2014–

2017 than those in 2012–2015, indicating that carry trade returns are low during the near-zero

interest rate periods due to unprecedented expansionary monetary policies but improve with the

step-down of quantitative easing. However, the highest annual returns in the three windows are

1.7% (1.001412 − 1), 3.4%, and 2.9% respectively, much lower than the 7.1% in Jorda and Taylor

(2012) and the 7.4% in Accominotti et al. (2019) before the global financial crisis. Overall, the

lower returns after the crisis provide supporting evidence that the UIP may hold in the long run.

In Table 2, we further investigate when the LSTM networks outperform other models. The

near-zero interest rate differentials between 2012 and 2017 are not the main profit contribution

component, and thus the accuracy of exchange rate prediction largely determines the realized carry

trade returns. Given that the portfolio is equally weighted, we examine the realized return at the
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currency pair level in order to dissect the portfolio return dominance under LSTM networks. Uti-

lizing TECM as the comparison model, LSTM networks perform better when two models suggest

contradicting strategies of carry trade: returns based on LSTM and TECM forecasts are 0.0030

versus -0.0018, 0.0037 versus -0.0027, and 0.0045 versus -0.0033 in three rolling windows. More-

over, carry trade returns through LSTM forecasts exhibit positive skewness, while those under

TECM have negative skewness. Consequently, the LSTM networks help to avoid “bad carries”

with low returns and negative skewness and thus improve model performance as pointed out by

Bekaert and Panayotov (2020).

Table 2: Comparison of LSTM and TECM

Where models agree Where models disagree
LSTM TECM LSTM TECM

Realized profits 2012–2015
Number of observations 206 206 217 217
Mean 0.0001 0.0001 0.0030 -0.0018
Std. dev. 0.0267 0.0267 0.0274 0.0274
Skewness -0.1538 -0.1538 0.1930 -0.1652
Max 0.0709 0.0709 0.0794 0.0793
Min -0.0871 -0.0871 -0.0784 -0.0772
Realized profits 2013–2016
Number of observations 202 202 221 221
Mean 0.0001 0.0001 0.0037 -0.0027
Std. dev. 0.0278 0.0278 0.0276 0.0276
Skewness -0.0967 -0.0967 0.1191 -0.0993
Max 0.0893 0.0893 0.0774 0.0793
Min -0.0871 -0.0871 -0.0784 -0.0770
Realized profits 2014–2017
Number of observations 197 197 199 199
Mean 0.0003 0.0003 0.0045 -0.0033
Std. dev. 0.0282 0.0282 0.0270 0.0271
Skewness -0.0700 -0.0700 0.1788 -0.1731
Max 0.0893 0.0893 0.0773 0.0776
Min -0.0871 -0.0871 -0.0784 -0.0770
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4 Conclusion

While the persistent positive carry trade returns of the early 2000s have posed a challenge to the

UIP, the literature is silent on the new features of carry trade after the global financial crisis. We

introduce a novel machine learning model, LSTM networks, to forecast carry trade returns and

find that LSTM networks improve return forecasts. Excess returns remain low in the post-crisis

periods, suggesting that we may not reject the UIP in the long run.
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