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1 Introduction

Ambitious carbon reduction targets, adopted by many countries,1 may lead to decreased

production efficiency and increased costs, as suggested by the literature.2 However, the

spatial allocation of these costs and reduction efforts remains an open question. For

instance, should we concentrate the steel industry in one region that has comparative

advantage and reduce carbon emissions elsewhere, or should we reduce emissions uni-

formly across regions? The answer to this type of questions is complicated because it

depends on many regional characteristics such as productivity, amenity, industrial com-

position, and emission intensity. Figure 1 depicts regional variations in China’s emission

intensity. Regarding policy implications, it is unclear whether policy should target carbon

reduction in a few high-intensity provinces or in many lower-intensity areas. Addition-

ally, regions are interconnected via trade, migration, and input-output linkages. Reduc-

ing emission in one region and sector could affect production and emissions in all other

regions and sectors. Creating a carbon reduction strategy that improves overall welfare

must account for this heterogeneity and interdependence.

To understand the optimal spatial allocation of carbon emissions, we need a quantita-

tive spatial model that incorporates carbon emissions and policies, as well as an efficient

algorithm to solve for the optimal policies. In the literature, we still lack such a model,3

and solving for high-dimensional optimal spatial policies remains computationally chal-

1For example, in 2022 Australia legislated its greenhouse gas emission reduction targets, aiming to reach
emission levels of 43% below 2005 levels by 2030 and to reach net zero by 2050. In 2021, President Biden
set the U.S. Greenhouse Gas Pollution Reduction Target aiming to reduce net greenhouse gas emissions by
50-52% from 2005 levels in 2030. In 2020, China proposed to reduce carbon emissions rapidly by 2045 and
achieve carbon neutrality by 2060.

2Recent studies emphasizes energy as an input for production and carbon emission as a side output
of energy usage. As a result, carbon reduction increases the cost of energy input and thereby the cost of
production. See, for example, Larch and Wanner (2017).

3Farrokhi and Lashkaripour (2024) make progress in this direction by incorporating carbon emissions
and policies into a quantitative trade model and characterizing optimal trade policies aiming to reduce
global carbon emissions. Their framework follows the quantitative trade model with pollution emissions
developed by Shapiro and Walker (2018). However, so far as we know, there is no quantitative framework
designed to understand optimal carbon polices within country across regions.
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Figure 1: Carbon Emission Intensity in China (2017)
(Notes: Emission intensity = Emission share in China/GDP share in China. Data Source: Carbon Emission Account&Datasets

(CEADs) and China’s Statistical Yearbook.)

lenging.4

To fill these gaps, we develop a multi-sector quantitative spatial model with carbon

emissions and carbon taxes. Building on the spatial model developed by Allen and Arko-

lakis (2014), we integrate carbon emissions and carbon taxes as specified in Shapiro and

Walker (2018) and Farrokhi and Lashkaripour (2024). Our model simulates a spatial econ-

omy in which workers are free to move across regions, driven by differences in technol-

ogy, amenities, and local agglomeration and congestion forces. Regions are connected

through trade and input-output linkages, which facilitate the exchange of goods and ser-

vices.

In our model, carbon emissions are considered a factor of production, and their price

is determined by the government’s carbon taxes. When a carbon tax is imposed on a

specific sector in a particular region, it reduces carbon emissions in that sector and region,

but increases its production costs. This tax also affects carbon emissions and production

4For instance, Lashkaripour and Lugovskyy (2023) highlight “the well-known limitations of numerical
optimization routines when applied to nonlinear models with many free-moving variables”.
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costs in other sectors and regions through trade and input-output linkages, as goods and

services are exchanged across the economy.

Leveraging the model above, we characterize carbon taxes that maximize aggregate

real income, subject to an aggregate carbon emission constraint. To this end, we develop

a novel emission allocative efficiency (EAE) measure, which quantifies the potential real

income gains achievable through the reallocation of emissions. This measure assesses the

trade-off between the benefits of reducing carbon emissions and the associated losses in

production efficiency for any given set of spatial carbon taxes. We show that the optimal

carbon tax for a particular sector in a given region is higher than the observed carbon tax

in that sector and region if its EAE exceeds 1, and lower if its EAE is less than 1. This

property of the EAE provides qualitative guidance for improving real income through

emission reallocation without the need to solve for optimal spatial carbon taxes explicitly.

Our analysis of the EAE is twofold. First, we develop a sufficient statistics approach

that links EAE with inter-regional trade, labor, and emission data. In a one-sector special

case, we derived an analytical expression that correlates a region’s EAE with its Katz-

Bonacich centrality within the inter-regional trade network. This finding indicates that

regions with greater influence should have lower carbon taxes, as reductions in these

areas could significantly impact overall production efficiency. Furthermore, in our full

model, we demonstrate that EAE can be calculated by solving a linear system using data

on inter-regional trade, labor, and emissions. Overall, our sufficient statistics approach

reveals that EAE has intuitive implications for designing optimal spatial carbon taxes

and can be computed using readily accessible data.

Second, we propose an iterative algorithm for solving optimal spatial carbon taxes us-

ing the properties of EAE. This algorithm combines the linear system that solves for EAE

with the nonlinear system that solves for equilibrium changes under exogenous changes

(the “exact-hat” algebra). The algorithm utilizes the EAE to enhance the computation

speed by informing the structure of the Jacobian matrix in the optimization process. This

allows our algorithm to efficiently compute complex, high-dimensional, and continuous
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optimal policies within a general equilibrium setting. It can be applied in a wide range of

quantitative trade and spatial models.

We apply our framework to quantify optimal carbon taxes for 30 provinces and 15

sectors in China using a calibrated model based on 2017 data on production, trade flows,

input-output linkages, population, and carbon emissions. We calculate the EAE for the

observed carbon taxes in the calibrated economy and then compute optimal carbon taxes

using our iterative algorithm. We find that

(i) EAE is highly correlated with the ratio of optimal carbon taxes over observed carbon

taxes. It suggests that EAE provides policy makers with qualitative guidance for

reallocating emissions to boost real income, without calculating the precise optimal

spatial carbon taxes.

(ii) Optimal spatial carbon taxes in our full model are negatively correlated with the

Katz-Bonacich centrality within the observed inter-regional trade network. This

finding implies that the readily computable Katz-Bonacich centrality metric can serve

as a valuable indicator for guiding the design of spatially targeted emissions poli-

cies.

(iii) Implementing optimal spatial carbon taxes could increase Chinese welfare by 1.42%

while keeping total emissions unchanged. This finding highlights the potential for

substantial gains when policymakers take into account regional heterogeneity and

interdependence in designing carbon reduction policies.

Related Literature–This paper relates to several strands of literature. First, it relates

to quantitative explorations of policies on carbon emission. Shapiro (2021) and Garcia-

Lembergman, Ramondo, Rodriguez-Clare, and Shapiro. (2024) quantify the impacts of

carbon policies in the global economy. Farrokhi and Lashkaripour (2024) further consider

the optimal design of carbon policies within a quantitative trade model. Our paper com-

plements this strand of literature by focusing on the optimal design of carbon emission
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policies across different regions within a country, which, to the best of our knowledge,

has not been extensively explored in previous studies.5

Second, we contribute to the characterization of optimal spatial policies. Fajgelbaum

and Gaubert (2020) characterize optimal transfers in a generalized spatial framework.

Henkel, Seidel, and Suedekum (2021) and Colas and Hutchinson (2021) investigate op-

timal taxes and fiscal transfers across different regions. Our paper enriches this body of

literature by bridging the gap between theoretical characterizations and the implementa-

tion of crucial spatial policies in practice.

Third, our work relates to targeting interventions in networks. Galeotti, Golub, and

Goyal (2020) provide generalized theoretical results for this problem. Liu (2019) exam-

ines the impacts of industrial policies in production networks, while Lashkaripour and

Lugovskyy (2023) consider optimal industrial policies in trade networks. Liu and Ma

(2024) investigate innovation subsidies in knowledge networks. This paper contributes

to this strand of literature by deriving sufficient statistics that can be used to characterize

optimal spatial carbon taxes through (i) linear approximation and (ii) a simple iterative

algorithm. Our framework for linear approximation and the iterative algorithm can be

applied to characterize a wide range of policies in networks, such as the combination of

zoning and industrial policies, pollution reduction across different regions, and economic

sanctions in trade and technology networks.

This paper is structured as follows. Section 2 introduces our model. Section 3 provides

a characterization of optimal spatial carbon taxes. In Section 4, we calibrate our model

and perform counterfactual analysis for optimal spatial emissions. Finally, we conclude

in Section 5.
5One exception is Arkolakis and Walsh (2023). They investigate the optimal spatial allocation of electric-

ity transmission networks and the corresponding consequences on the adoption of renewable energy. This
paper departs from their work by considering generalized spatial policies on carbon emissions.
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2 Spatial Model with Carbon Emission and Carbon Tax

2.1 Environment

Consider a spatial economy with N regions, denoted by (i, n, k), and J sectors, denote by

(j, s). Total endowment of workers is L̄. Workers are freely mobile across regions and

sectors. The representative consumer in region i has a Cobb-Douglas preference over J

sectors:

Ui = BiL
−β
i

J

∏
j=1

(
Cj

i

)αj
,

N

∑
j=1

αj = 1, (1)

where Cj
i is the consumption of sector j in region i. BiL

−β
i represents amenity in region i,

where Bi is the exogenous amenity shifter, Li is the labor in region i, and β ≥ 0 captures

the congestion force over space.

Each sector j consists of a unit mass of varieties, aggregated by a CES function with the

elasticity of substitution σj ≥ 0. Following Shapiro and Walker (2018) and Farrokhi and

Lashkaripour (2024), we regard carbon emission as a factor of production whose price is

determined by carbon tax. This is a tractable way to incorporate carbon abatement costs

and carbon policies into a general equilibrium framework. Specifically, we assume that

each variety is produced by a firm using labor, carbon, and intermediates in a perfectly

competitive market. The unit cost of variety ω of sector j produced in region i is given by

cj
i(ω) =

cj
i

zj
i (ω)

, cj
i ≡ L

−ψj
i w

γL
j

i

J

∏
s=1

(Ps
i )

γsj
(

tj
i

)ξ j
, γL

j +
J

∑
s=1

γsj + ξ j = 1, (2)

where wi is the wage in region i, Ps
i is the price index of sector s in region i, tj

i > 0 is the tax

rate on carbon emission in region i and sector j, and zj
i(ω) is the productivity of variety

ω. Notice that (i) ψj ≥ 0 characterizes the sectoral agglomeration force,6 and (ii) ξ j is the

share of carbon emission in producing good j which, as shown below, affects the emission

6This specification follows Adao, Arkolakis, and Esposito (2023) to allow productivities of different sec-
tors respond differently to changes in local production scale.
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intensity of sector j. We assume that region i has a share si in the carbon tax revenue. In

our baseline specification, we assume that si =
wi Li

∑N
k=1 wk Lk

.

The exogenous productivity zj
i (ω) is drawn independently from a Frechet distribution

with level parameter Aj
i and shape parameter θj ≥ σj. Exporting good j from region i to

n incurs an iceberg trade cost τ
j
in.

2.2 Equilibrium

We proceed by defining the equilibrium in our model. Let X j
i be the total expenditure in

region i on good j and X j
in be the value of trade of good j from region i to n. Then

λ
j
in ≡

X j
in

X j
n
=

Aj
i

(
τ

j
incj

i

)−θj

∑N
k=1 Aj

k

(
τ

j
kncj

k

)−θj
. (3)

The price indices can be expressed as

Pj
n =

[
N

∑
k=1

Aj
k

(
τ

j
kncj

k

)−θj

]− 1
θj

, Pn =
J

∏
j=1

(
Pj

n

)αj
. (4)

The wage satisfies

wiLi =
J

∑
j=1

γL
j

N

∑
n=1

λ
j
inX j

n. (5)

Final income in region i is the sum of wage income and carbon tax revenue:

Yi = wiLi + siR, R ≡
N

∑
k=1

J

∑
j=1

Rj
k, Rj

k ≡ ξ j

N

∑
n=1

λ
j
knX j

n, si =
wiLi

∑N
k=1 wkLk

. (6)
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X j
i is the sum of final consumption and intermediate usage:

X j
i = αjYi +

J

∑
s=1

γjs

N

∑
n=1

λs
inXs

n. (7)

Welfare equalization implies that

BiL
−β
i

Yi/Li

Pi
= W. (8)

Since L̄ = ∑N
i=1 Li, we have

Li

L̄
=

(
Bi

Yi/Li
Pi

) 1
β

∑N
k=1

(
Bk

Yk/Lk
Pk

) 1
β

, (9)

and the aggregate welfare can be measured by the weighted average of regional real in-

come:

W =
1

L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

. (10)

Finally, the aggregate emission is given by

E =
J

∑
j=1

N

∑
i=1

Ej
i , Ej

i ≡
ξ j

tj
i

N

∑
n=1

λ
j
inX j

n. (11)

Definition Given parameters
(

ψj, β, θj, αj, γL
j , γsj, ξ j; Aj

i , Bi, τ
j
in; L̄; tj

i

)
, the equilibrium con-

sists of
(

wi, Li, Pj
n, X j

n

)
such that (i) (wi) is given by labor market clearing in Equation (5);

(ii) (Li) is given by the labor allocation in Equation (9); (iii)
(

Pj
n

)
is given by the price

index in Equation (4); (iv)
(

X j
n

)
is given by goods market clearing in Equation (7).

Following Dekle, Eaton, and Kortum (2008), we can express our equilibrium system

in relative changes. For any variable Z > 0, we denote Z′ as its level after changes and

Ẑ ≡ Z′
Z . Let χ

j
in ≡

γL
j λ

j
inX j

n

wi Li
be the export share. Let δ

j
kn ≡ 1

R ξ jλ
j
knX j

n be the carbon tax
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revenue share. Let νY
ij ≡

αjYi

X j
i

be final expenditure share. Let ν
js
in ≡ γjsλs

inXs
n

X j
i

be intermediate

expenditure share.

Then given exogenous changes
(

t̂j
i

)
, we can derive

(
ŵi, L̂i, P̂j

n, X̂ j
n

)
by solving the fol-

lowing non-linear system:

ŵi L̂i =
J

∑
j=1

N

∑
n=1

χ
j
inλ̂

j
inX̂ j

n, λ̂
j
in =

(
ĉj

i

)−θj
(

P̂j
n

)θj
, ĉj

i = L̂
−ψj
i ŵ

γL
j

i

(
t̂j
i

)ξ j
J

∏
s=1

(
P̂s

i
)γsj

(
P̂j

n

)−θj
=

N

∑
i=1

λ
j
in

(
ĉj

i

)−θj
, P̂n =

J

∏
j=1

(
P̂j

n

)αj

X̂ j
i = νY

ij Ŷi +
J

∑
s=1

N

∑
n=1

ν
js
inλ̂s

inX̂s
n, Ŷi = ŵi L̂i

[
1

1 + R
+

R
1 + R

N

∑
k=1

J

∑
j=1

N

∑
n=1

δ
j
knλ̂

j
knX̂ j

n

]
,

L̂i =

(
ŵi
P̂i

) 1
β

∑N
k=1 ιk

(
ŵk
P̂k

) 1
β

, ιi ≡
Li

L̄
.

(12)

3 Optimal Spatial Emissions

3.1 Optimization Problem and Emission Allocative Efficiency (EAE)

The central government decides
(

tj
i

)
to maximize the aggregate welfare subject to an

aggregate emission constraint:

max(
tj
i ;wi,Li,P

j
n,X j

n

)W ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

s.t.
J

∑
j=1

N

∑
i=1

ξ j

tj
i

N

∑
n=1

λ
j
inX j

n ≤ Ē,

(
wi, Li, Pj

n, X j
n

)
satisfy Equation (4), (5),(9), and (7)

(13)

Given the Cobb-Douglas utility function and production function, it is straightforward

to show that the solution to Problem (13), denoted as t∗ ≡
(

tj∗
i

)
, exists.
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To characterize the optimal carbon taxes t∗, we develop an emission allocative effi-

ciency (EAE) measure: for any carbon tax profile t ≡
(

tj
i

)
, its corresponding EAE is

defined as

Mj
i (t) ≡

µ

W

Ej
i +

J

∑
s=1

N

∑
k=1

(
−

∂ log Rs
k

∂ log tj
i

)
Es

k︸ ︷︷ ︸
Effect of tj

i on carbon emissions



 −∂ log W

∂ log tj
i︸ ︷︷ ︸

Effect of tj
i on real income



−1

, (14)

where µ is the Lagrange multiplier of the aggregate carbon emission constraint in Equa-

tion (13).

By construction, Mj
i (t) increases with the effect of tj

i on aggregate carbon emission

and decrease with (the absolute value of) the effect of tj
i on aggregate real income W. As

a result, Mj
i (t) summarizes the key trade-off in determining carbon taxes: the increase in

tj
i would lower carbon emissions but also lower real income by raising production costs.

In the following lemma, we will argue that Mj
i (t) measures the extent to which emission

reallocation would increase the aggregate real income.

Proposition 1 (Emission Allocative Efficiency) Let t∗ ≡
(

tj∗
i

)
be the solution of Problem

(13). Then there exists δ > 0 such that for any t satisfying ∑i,j

[
tj
i − tj∗

i

]2
≤ δ, Mj

i (t) defined by

Equation (14) has the following properties:

1. Mj
i (t

∗) = 1 for all (i, j).

2. If Mj
i (t) > 1, then tj∗

i > tj
i .

3. If Mj
i (t) < 1, then tj∗

i < tj
i .

Proposition 1 suggests that tj
i should increase if the benefit from carbon reduction

exceeds the loss from lowering real income. Moreover, Proposition 1 implies that tj∗
i is
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higher in the region-sector pair where (i) the carbon tax can substantially reduce carbon

emission, or (ii) the carbon tax has small negative effects on the aggregate welfare.

Though Lemma 1 holds only if t is close to t∗, our counterfactual analysis in Section

4.2 will show that it holds numerically in most of the (i, j)-pairs for the observed t in our

quantification practice. Consequently, Mj
i (t) could offer a qualitative guidance for spatial

carbon policies: carbon taxes should be higher in region-sector pairs with higher Mj
i (t)

and lower in those with lower EAE.

Although EAE is useful in characterizing optimal spatial carbon taxes, it is a general

equilibrium outcomes determined by rich heterogeneity and interdependence across re-

gions. To make EAE useful in quantification, we first take a sufficient statistics approach

by connecting EAE with data observations. Then, based on these sufficient statistics, we

develop an iterative algorithm to solve for the optimal spatial carbon taxes.

3.2 Sufficient Statistics

In this subsection, we express Mj
i (t) by model parameters

(
ψj, β, θj, αj, γL

j , γsj, ξ j

)
and

data on trade, labor, and emissions,
(

X j
in, Li, Ej

i

)
. We first derive analytical expressions of

EAE in the one-sector special case of our model. We then derive a linear system that can

be used to solve EAE in our full model.

One-sector special case. Consider there is only one sector, i.e. J = 1 and there is no

roundabout production, i.e. γjs = 0 for all (j, s). We omit subscript/superscript j for all

variables in this case. The EAE in this case can be expressed as

Mi (t) =
µξ

W

[
Ei +

N

∑
k=1

(
−∂ log Rk

∂ log ti

)
Ek

](
−∂ log W

∂ log ti

)−1

. (15)

We define several parameters and matrices. Let θ̆ = θ
1+θ(2−ξ)

, δ1 = 1+[1 + θ(1 − ξ)] β−

θψ, and δ2 = (1− ξ)− θ(1− ξ)β+ (1+ θ)ψ. Let ι ≡ [ιi] be a column vector, e be a column
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vector with all ones, and I be the identity matrix. Let χin ≡ Xin
∑N

k=1 Xik
, and χ = [χin] with i

denoting the rows and n denoting the columns.

Proposition 2 The welfare effects of carbon taxes:

[
∂ log W
∂ log t1

, . . . ,
∂ log W
∂ log tN

]
= −

ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
(16)

The effects of carbon taxes on carbon tax revenues

[
∂ log Rk
∂ log ti

]
=

[
1 + θ̆

(
β + ψ − 1

θ

)] [
∂ log Lk
∂ log ti

]
− θ̆ξI, (17)

where
[

∂ log Lk
∂ log ti

]
= −

[
I − 1

ι′
[
I− δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ
]−1

eι′

] [
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]
.

The detailed proof to Proposition 2 is presented in Appendix A.2. Notably, matrix

χ represents inter-provincial trade networks and thereby summarizes rich heterogeneity

and interdependence across regions. The vector ι′
[
I − δ2

δ1
χ
]−1

is the Katz-Bonacich Cen-

trality (KC) that reflects the influence of each region in inter-provincial trade networks.

EAE in our full model. Characterizing EAE in our full model is challenging since

there are multiple sectors with input-output linkages. Instead of analytical expressions,

we express
(

∂ log Rs
k

∂ log tj
i

)
and

(
∂ log W
∂ log tj

i

)
in our full model as the solution to a linear recursive

system.

Without loss of generality, we normalize ∑N
i=1 wiLi = 1. For any variables Zi > 0, we
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denote Z̃i ≡ d log Zi. Then
(

w̃i, L̃i, P̃j
i , X̃ j

i

)
can be computed by solving:

w̃i + L̃i =
J

∑
j=1

N

∑
n=1

χ
j
in

(
λ̃

j
in + X̃ j

n

)
, λ̃

j
in = −θj c̃

j
i + θjP̃

j
n, c̃j

i = −ψj L̃i + γL
j w̃i + ξ j t̃

j
i +

J

∑
s=1

γsjP̃s
i

X̃ j
i = νY

ij Ỹi +
J

∑
s=1

N

∑
n=1

ν
js
in
(
λ̃s

in + X̃s
n
)

, Ỹi =
(
w̃i + L̃i

)
+

R
1 + R

N

∑
k=1

J

∑
j=1

N

∑
n=1

δ
j
kn

(
λ̃

j
kn + X̃ j

n

)
P̃j

n =
N

∑
i=1

λ
j
in c̃j

i , P̃n =
J

∑
j=1

αjP̃
j
n, L̃i =

1
β

(
w̃i − P̃i

)
− 1

β

N

∑
k=1

ιk
(
w̃k − P̃k

)
(18)

The welfare effects of carbon taxes can then be derived by:

W̃ =
N

∑
k=1

ιk
(
Ỹk − L̃k − P̃k

)
. (19)

The impacts of carbon taxes on carbon tax revenues can be expressed as

R̃j
i =

N

∑
n=1

ξ jλ
j
inX j

n

Rj
i

(
λ̃

j
in + X̃ j

n

)
. (20)

Therefore, for any spatial economy where we can observe
(

ψj, β, θj, αj, γL
j , γsj, ξ j

)
and(

X j
in, Li, Ej

i

)
, Mj

i (t) defined by Equation (14) can be derived by solving Equation (18).

3.3 An Iterative Algorithm to Solve for tj∗
i

In this subsection, we utilize the property of EAE shown in Proposition 1 to develop an

iterative algorithm solving for
(

tj∗
i

)
.

Algorithm 3
(

tj∗
i

)
that solves the problem in Equation (13) can be calculated as follows:

1. Guess
(

tj∗
i

)
∈ R

N×J
++ .

2. Solve for
(

X j
in, ιi

)
under

(
tj∗
i

)
by “exact-hat algebra” in Equation (12).
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3. Solve the linear system (18).

4. Calculate Mj
i(t

∗) using Equation (19), (20), and (14).

5. Update tj∗
i by tj∗

i Mj
i(t

∗).

6. Repeat Step 1-5 until tj∗
i = tj∗

i Mj
i(t

∗) for all (i, j).

7. Adjust the level of
(

tj∗
i

)
to bind the aggregate emission constraint in Equation (13).

4 Quantification

4.1 Data and Calibration

Our quantitative analysis requires values on
(

ψj, β, θj, αj, γL
j , γsj; ξ j, tj

i ; X j
in

)
. We consider

N = 30 Chinese provinces and J = 15 sectors in 2017. We calibrate
(
θj, ψj

)
from Lashkaripour

and Lugovskyy (2023). Notably, we rescale the scale elasticities so that its average is equal

to 0.05, consistent with the estimate in Adao et al. (2023). We report the calibrated values

of
(
θj, ψj

)
in the first two columns of Table 1.

We calibrate β = 2
3 from Tombe and Zhu (2019). We calibrate

(
αj, γL

j , γsj

)
using Chi-

nese aggregate input-output table for 2017. We obtain
(

X j
in

)
directly from Chinese inter-

provincial input-output table for 2017.

We calibrate
(

ξ j, tj
i

)
combining Chinese inter-provincial input-output table and Car-

bon Emission Account&Datasets (CEADs). In particular, we have

ξ j

tj
i

=
Ej

i

∑N
n=1 X j

in

. (21)

We normalize 1
N ∑N

i=1 tj
i = 1 for all j. We then get ξ j and tj

i separately. To this end, we

attribute all sectoral variations in emission intensities to
(
ξ j
)
. Notably, we adjust the unit

15



Table 1: Calibration of
(
θj, ψj, ξ j

)
Sector Description θj ψj ξ j

1 Agriculture&Mining 6.227 0.0254 0.0203
2 Food 2.303 0.0697 0.0064
3 Textiles, Leather&Footwear 3.359 0.0397 0.0083
4 Wood 3.896 0.0406 0.0032
5 Paper 2.646 0.0567 0.0153
6 Petroleum 1.200 0.2163 0.0368
7 Chemicals 3.966 0.0411 0.0262
8 Rubber&Plastic 5.157 0.0248 0.0041
9 Minerals 5.283 0.0296 0.0883
10 Basic&Fabricated Metals 3.004 0.0371 0.0635
11 Machinery 7.75 0.0213 0.0077
12 Electrical&Optical Equipment 1.235 0.0979 0.0034
13 Transport Equipment 2.805 0.0229 0.0041
14 N.E.C.&Recycling 6.169 0.0270 0.0054
15 Services 10 0.0000 0.0070

Simple Average 4.33 0.05 0.02

of Ej
i so that 1

J ∑J
j=1 ξ j = 0.02, consistent with the estimate in Shapiro and Walker (2018).

We report the calibrated values of
(
ξ j
)

in the last column of Table 1.

4.2 EAE and Optimal Spatial Carbon Taxes

In this subsection, we characterize
(

tj∗
i

)
in our calibrated economy. First, we calculate

EAE Mj
i (t) for the observed

(
tj
i

)
by solving the linear system in Equation (18). Notably,

to solve for the partial derivatives ∂ log W
∂ log tj

i

and ∂ log Rs
k

∂ log tj
i

, we need to solve Equation (18) for

N × J times. It takes about 3 minutes in a personal computer to calculate Mj
i (t) under

N = 30 and J = 15.

Figure 2 depicts Mj
i (t) for the observed

(
tj
i

)
in our calibrated economy. It suggests

that carbon taxes should increase in few provinces such as Shanxi, Xinjiang, Inner Mon-

golia, and Liaoning. These provinces are with high emission intensities and are relatively

peripheral within inter-regional trade networks. As a result, raising tj
i in these provinces

could lead to large gains from carbon reduction and small losses in production efficiency.
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Figure 2: Emission Allocative Efficiency Mj
i(t) in 2017 Chinese Economy

(Notes: The bar in the middle of the box indicates the median of Mj
i (t) for province i. Two edges of the box represent, respectively, 25

and 75 percentiles. Notice that Mj
i (t) > 1 suggests that tj∗

i > tj
i .)

We then compute
(

tj∗
i

)
using Algorithm 3. The algorithm takes about 3 hours to

converge under N = 30 and J = 15. Comparing with the algorithm used in Ossa (2014),

our algorithm is efficient in solving for the high-dimensional optimal policies.

Figure 3 depicts
(

tj∗
i

)
in 2017 Chinese economy. It suggests that within each sector(

tj∗
i

)
vary substantially across provinces. The significant regional disparities in

(
tj∗
i

)
underscore the critical role of spatial dimensions in designing welfare-enhancing car-

bon tax policies. Moreover, optimal carbon taxes would increase Chinese real income

by 1.42% compared to the calibrated economy, while keeping aggregate carbon emissions

unchanged.

Proposition 2 has revealed an analytical relationship between
(

tj∗
i

)
and Katz-Bonacich

centrality within inter-regional trade networks in a one-sector special case. Figure 4 de-

picts this relationship in our full model, suggesting that tj∗
i is significantly negatively

correlated with Katz-Bonacich centrality within inter-provincial trade networks. Intu-

itively, the region-sector pair with higher Katz-Bonacich centrality has larger influence

within inter-regional trade networks. This result demonstrates the informativeness of
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Figure 3: Optimal Spatial Carbon Taxes in 2017 Chinese Economy

(Notes: The bar in the middle of the box indicates the median of
(

tj∗
i

)
for sector j. Two edges of the box represent, respectively, 25

and 75 percentiles.)
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Figure 4: Optimal Spatial Carbon Taxes and Katz-Bonacich Centrality within Inter-
Provincial Trade Networks

(Notes:
[
KCj

1, . . . , KCj
N

]
≡ ι′

[
I − δ2j

δ1j
χj

]−1
. The dash line shows the linear fit. Regressing log

(
tj∗
i

)
on KCj

i results in the slope

coefficient −1.96 with s.e. 0.56.)
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readily computable Katz-Bonacich centrality about welfare-enhancing reallocation of car-

bon emissions.
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Figure 5: Optimal Spatial Carbon Taxes and Emission Allocative Efficiency
(Notes: The dash line is the 45-degree line.)

Finally, we investigate to what extent our EAE, Mj
i (t), for the observed

(
tj
i

)
can pre-

dict
(

tj∗
i /tj

i

)
. Figure 5 suggests that Mj

i (t) is highly significantly correlated with
(

tj∗
i /tj

i

)
.

Therefore, using our EAE Mj
i (t) offers a highly efficient approach to guide spatial carbon

policies, taking just a fraction (1/60th) of the time required for computing optimal spatial

carbon taxes.

5 Conclusion

In this paper, we develop a multi-sector quantitative spatial model with carbon emissions

and carbon taxes to quantify optimal spatial carbon policies. We propose a novel emission

allocative efficiency (EAE) measure that quantifies the extent to which emission realloca-

tion could increase real income. We develop a sufficient statistics approach that connects

EAE with readily computable Katz-Bonacich centrality within inter-regional trade net-
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works and, based on the properties of EAE, design an iterative algorithm to compute

high-dimensional optimal spatial carbon taxes. Our quantitative analysis of the Chinese

economy highlights the importance of inter-regional connections for optimal allocation of

carbon emissions.

Our framework has broad policy applications. First, it can calculate optimal spatial

carbon policies for major economies including the U.S. and EU. Second, it can be used

to compute optimal policies in other networks such as industrial policies in trade and

production networks and innovation policies in knowledge networks. Notably, we do

not specify how the optimal spatial carbon taxes could be practically implemented. This

implementation question remains open for future research.
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A Theory

A.1 Emission Allocative Efficiency

The Lagrange function of Problem (13) is defined as

L (t; µ) ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

+ µ

[
Ē −

J

∑
j=1

N

∑
i=1

ξ j

tj
i

N

∑
n=1

λ
j
inX j

n

]
. (A1)

The first-order conditions indicate that the optimal carbon taxes
(

tj∗
i

)
satisfy:

∂L (t∗; µ∗)

∂tj
i

= 0 ⇒ ∂W

∂tj
i

= µ∗

− Rj∗
i(

tj∗
i

)2 +
J

∑
s=1

N

∑
k=1

∂Rs
k

∂tj
i

1
ts∗
k

 , (A2)

and
J

∑
j=1

N

∑
i=1

Ej∗
i = Ē. (A3)

Proof to Proposition 1

Equation (A2) can be expressed as:

1 =
µ∗

W∗

[
Ej∗

i +
J

∑
s=1

N

∑
k=1

(
−

∂ log Rs
k

∂ log tj
i

)
Es∗

k

](
−∂ log W

∂ log tj
i

)−1

. (A4)

The RHS of Equation (A4) is, by construction, Mj
i (t

∗). Therefore, we have Mj
i (t

∗) = 1.

Suppose that t = t∗ except for tj
i . Notice that L (t; µ) is continuously differentiable

w.r.t. t. Then there exists δ > 0 such that for any tj
i ∈
(

tj∗
i − δ, tj∗

i + δ
)

we have

∂L (t; µ)

∂tj
i

> 0 ⇒ tj
i < tj∗

i and
∂L (t; µ)

∂tj
i

< 0 ⇒ tj
i > tj∗

i . (A5)
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Equivalently, for any tj
i ∈

(
tj∗
i − δ, tj∗

i + δ
)

, we have if Mj
i(t) > 1 then tj∗

i > tj
i and if

Mj
i(t) < 1 then tj∗

i < tj
i .

Again, since L (t; µ) is continuously differentiable w.r.t. t, there exists δ > 0 such that

for any t satisfying ∑i,j

[
tj
i − tj∗

i

]2
≤ δ, we have if Mj

i(t) > 1 then tj∗
i > tj

i and if Mj
i(t) < 1

then tj∗
i < tj

i .

Q.E.D.

A.2 One-Sector Case

In the one-sector case, the central government solves for the following spatial emission

problem:

max
(ti;wi,Li,Xi)

W ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Xk/Lk
Pk

) 1
β

]β

s.t.
N

∑
i=1

ξ

ti

N

∑
n=1

λinXn ≤ Ē,

wiLi = γL
N

∑
n=1

λinXn

Xi = wiLi + siR, R ≡ ξ
N

∑
k=1

N

∑
n=1

λknXn, si =
wiLi

∑N
k=1 wkLk

Pn =

[
N

∑
k=1

AkLθψ
k

(
τknwγL

k tξ
k

)−θ
]− 1

θ

Li

L̄
=

(
Bi

Xi/Li
Pi

) 1
β

∑N
k=1

(
Bk

Xk/Lk
Pk

) 1
β

(A6)

Lagrange:

L = W + µ

(
Ē −

N

∑
k=1

ξXk
tk

)
. (A7)

F.O.C.
∂W
∂ti

+ µ

(
ξXi

t2
i

−
N

∑
k=1

ξ

tk

∂Xk
∂ti

)
= 0. (A8)

23



Then

−∂ log W
∂ log ti

=
µ

W∗

(
ξX∗

i
t∗i

−
N

∑
k=1

ξX∗
k

t∗k

∂ log Xk
∂ log ti

)
. (A9)

Then

t∗i =
µξ

W∗

[
X∗

i +
N

∑
k=1

t∗i
t∗k

(
−∂ log Xk

∂ log ti

)
X∗

k

](
−∂ log W

∂ log ti

)−1

. (A10)

Proof to Proposition 2

Notice that the aggregate consumption expenditure is equal to the aggregate pro-

duction value, i.e. ∑N
i=1 Xi = ∑N

i=1 ∑N
n=1 λinXn. Also γL + ξ = 1. Therefore, we have

R = ξ
1−ξ ∑N

i=1 wiLi and Xi =
1

1−ξ wiLi. Then the equilibrium system can be expressed in

terms of (wi, Li, Pi; W):

wiLi =
N

∑
n=1

AiL
θψ
i

(
τinw1−ξ

i tξ
i

)−θ
Pθ

nwnLn

P−θ
i =

N

∑
n=1

AnLθψ
n

(
τniw

1−ξ
n tξ

n

)−θ

Li =

(
1

1 − ξ

) 1
β

W− 1
β

(
Bi

wi

Pi

) 1
β

N

∑
i=1

Li = L̄.

(A11)

Then we have

A−1
i w1+θ(1−ξ)

i L1−θψ
i tθξ

i =

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
in Bθ

nw1+θ
n L1−θβ

n , (A12)

and

B−θ
i w−θ

i Lθβ
i =

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
ni AnLθψ

n

(
w1−ξ

n tξ
n

)−θ
. (A13)

Then we have

A−1
i w1+θ(1−ξ)

i L1−θψ
i tθξ

i = ϕB−θ
i w−θ

i Lθβ
i , (A14)
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where ϕ > 0 is some scalar.

Therefore,

wi = ϕ
1

1+θ(2−ξ)

(
AiB−θ

i

) 1
1+θ(2−ξ) L

θ(β+ψ)−1
1+θ(2−ξ)

i t
− θξ

1+θ(2−ξ)

i . (A15)

Then

A
− θ

1+θ(2−ξ)

i B
− θ[1+θ(1−ξ)]

1+θ(2−ξ)

i L
θ

1+[1+θ(1−ξ)]β−θψ
1+θ(2−ξ)

i t
θ2ξ

1+θ(2−ξ)

i

= ϕ
1+θ

1+θ(1−ξ)

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
in A

1+θ
1+θ(2−ξ)
n B

θ2(1−ξ)
1+θ(2−ξ)
n L

θ
(1−ξ)−θ(1−ξ)β+(1+θ)ψ

1+θ(2−ξ)
n t

−θξ 1+θ
1+θ(2−ξ)

n .
(A16)

Let θ̆ = θ
1+θ(2−ξ)

, δ1 = 1 + [1 + θ(1 − ξ)] β − θψ, and δ2 = (1 − ξ)− θ(1 − ξ)β + (1 +

θ)ψ. Then

Lθ̆δ1
i tθ̆θξ

i = ϕ
1+θ

1+θ(1−ξ)

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

KinLθ̆δ2
n t−θ̆(1+θ)ξ

n , (A17)

where Kin = τ−θ
in A

θ̆(1+ 1
θ )

n Bθ̆θ(1−ξ)
n Aθ̆

i Bθ̆[1+θ(1−ξ)]
i .

We then log-linearize Equation (A17). For any variables (Zi)
N
i=1 with Zi > 0, we denote

Z̃i ≡ d log Zi and the column vector Z̃ ≡
(
Z̃1, . . . , Z̃N

)′. We also denote ∇t̃Z̃ ≡
[

∂ log Zk
∂ log ti

]
as a matrix with k denoting the rows and i denoting the columns.

Notice that Equation (A17) is derived from (A12). Then we have

L̃i = − θ

θ̆δ1
W̃ − θξ

δ1
t̃i +

N

∑
n=1

χin

[
δ2

δ1
L̃n −

(1 + θ)ξ

δ1
t̃n

]
, (A18)

where χin = Xin
∑N

k=1 Xik
.

We then have the matrix expression as

L̃ = − θ

θ̆δ1
eW̃ − θξ

δ1
t̃ +

δ2

δ1
χL̃ − (1 + θ)ξ

δ1
χt̃. (A19)
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Therefore,

L̃ = − θ

θ̆δ1

[
I − δ2

δ1
χ

]−1

eW̃ −
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A20)

We also have
N

∑
i=1

ιi L̃i = 0. (A21)

Therefore

0 = ι′L̃ = − θ

θ̆δ1
ι′
[

I − δ2

δ1
χ

]−1

eW̃ − ι′
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A22)

Then

W̃ = −
ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
t̃. (A23)

Then

∇t̃W̃ = −
ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
. (A24)

The effects of carbon taxes on labor can be expressed as

L̃ =
1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃

−
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃.

(A25)

Therefore,

L̃ = −

I − 1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′

 [I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A26)
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Then

∇t̃L̃ = −

I − 1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′

 [I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
.

(A27)

Moreover,

w̃ = θ̆

[
(β + ψ)− 1

θ

]
L̃ − θ̆ξ t̃. (A28)

Since X̃ = w̃ + L̃. Therefore,

∇t̃X̃ =

[
1 + θ̆

(
β + ψ − 1

θ

)]
∇t̃L̃ − θ̆ξI. (A29)

Q.E.D.
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