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Abstract

This note presents a simple model of transshipment, under which bilateral transport costs
are an explicit and differentiable function of route and transshipment costs. We characterize
bilateral transport costs and their elasticities with respect to transshipment costs.

Movements of goods and people usually combine multiple modes of transportation. Most mer-
chandise exports are first shipped via ground transport to ports and then loaded to cargo ships.
Often times, they are initially loaded to small ships and then, together with goods from other
small ships, transferred to large ships in a regional hub for the long haul. Within a country,
logistic companies usually connect flights with truckers in delivering packages. For passengers
whose origin and destination are not major airline hubs, transfers between flights, railway, and
cars are also all but unavoidable.

Such transfers incur significant time and monetary costs to both business and passengers. To
reduce these costs, economic activities gravitate towards transshipment points. The clustering
of activities around transshipment points has given rise to many great cities historically. For
example, in the U.S., many of the 18th century portage sites along the east coast fall line grew
into major cities (Bleakley and Lin, 2012); Chinese city Zhengzhou, which sits on the intersections
of multiple major railways and national roads, grew from a small county to a city with 10 million
population in less than 60 years.

This note presents a tractable model of transshipment. The model builds on the ‘round-about’
transport model of Allen and Arkolakis (2019), which we extend to allow for multiple coexisting
modes and costly transfer between modes.1 The advantage of the model is in its tractability: bi-
lateral travel costs are an analytical and differentiable function of network parameters; moreover,
the elasticity of bilateral costs with respect to the cost of switching modes at any city can also be
derived. This makes possible analytical characterizations of how improvements in efficiency of
transfer in a city affect shipment flows and the aggregate welfare.

*We thank Costas Arkolakis as our discussant at SUFE-IESR Trade Workshop for inspiring this note.
†Pennsylvania State University, PA, USA; jxf524@psu.edu
‡Tsinghua University, Beijing, China; luowenlan@gmail.com
1Fan, Lu and Luo (2019) extends Allen and Arkolakis (2019) to incorporate two co-existing modes of transportation.

This note shows that the extension can be readily modified to allow for transfer costs.

1



In the rest of this note, we start by briefly describing the setup in Fan, Lu and Luo (2019). We
then add transshipment costs to the model.

Two-mode transport without transfer costs. Consider an economy with N locations, con-
nected by two modes of transportation. We label the two modes as H and L, standing for high-
and low-capacity, respectively. These two modes can be entirely different categories, such as
railway and truck, or different types of vehicles within a category, such as small and large cargo
ships. Let tH

ij be the ad-valorem cost of going from i to j along edge i → j on network H and tL
ij

the corresponding cost on network L. If i and j are not directly connected on a network, the edge
cost is infinity.

We assume that the drivers or travelers from o to d visit sequentially nodes on the networks
before arriving at the destination d. With detours and repeated edges on a path allowed, travelers
have infinitely many possible paths to choose from. Travelers choose the one with the lowest
cost, subject to their idiosyncratic preference over routes, given by a Frechet distribution with
dispersion parameter θ. Modeling idiosyncratic preference with Frechet shock enables analytical
characterization of the trade cost as a function of the transport network.2 Specifically, slightly
abusing notations, define two N × N matrices, H and L, such that the i, jth element of these
matrices, [H]ij, and [L]ij are given by the following:

[H]ij = (tH
ij )
−θ

[L]ij = (tL
ij)
−θ .

Define X to be the following

X = (I − H − L)−1.

Fan et al. (2019) shows that the result in Allen and Arkolakis (2019) extends to this setting: after
taking into account travelers’ idiosyncratic preference, the average effective cost between o and
d, denoted by τod is

τod = c · [X]−θ
od ,

where [X]od is the o, dth entry of X and c is the constant Γ( θ−1
θ ). This average is taken across all

possible paths from o to d with arbitrarily many edges. It allows a traveler to combine different
segments of H and L to form a path to their own taste. For example, let H be air transport and L
be car transport; a traveler from State College, PA to Athens, GA, can first take a flight to Atlanta,
transferring in D.C., and then drive from Atlanta to Athens.

Introducing transshipment. Despite the flexibility in combining multiple modes of transport,
the above routing model overlooks that mode transfers are costly for both goods and people.

2Notice because of this idiosyncratic preference, a small fraction of drivers might end up taking a detour; an even
smaller fraction might take a roundabout.
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Below we add such cost to the model.
We introduce two additional matrices, H̃ and L̃. The i, jth entry of H̃ is [H̃]i,j ≡ (t̃H

ij )
−θ , where

t̃H
ij is the cost of going along the edge i → j of network H when a change of mode is needed in i. For

example, if the traveler arrives in i via network L but continues from i to j via H, then the cost
along the edge i→ j is t̃H

ij instead of tH
ij , the cost for when no mode change is needed. t̃H

ij − tH
ij is

therefore the transshipment cost. Similarly, L̃ is defined such that [L̃]ij ≡ (t̃L
ij)
−θ , with (t̃L

ij) being
the cost of moving along the edge i→ j when a mode switch is needed in i.

The following proposition characterizes the dependence of bilateral trade costs on transship-
ment costs.

Proposition 1. Define A ≡
[

H L̃
H̃ L

]
, B ≡ (I − A)−1 ≡

[
B1 B2

B3 B4

]
,3 then

a) The trade cost between o and d for o 6= d is given by:

τod = c ·
([

[H, L](I − A)−1

[
I
I

] ]
od

)− 1
θ

where c is the constant Γ( θ−1
θ ) and Γ is the gamma function.

b) The elasticity of trade cost between o and d w.r.t. the transshipment cost from i to j for mode H is

∂ log(τod)

∂ log(t̃H
ij )

=
∑k(hokb2

ki + likb4
ki)× h̃ij × (b1

jd + b2
jd)

∑k(hokb1
kd + lokb3

kd) + ∑k(hokb2
kd + likb4

kd)
,

and similarly,

∂ log(τod)

∂ log(t̃L
ij)

=
∑k(hokb1

ki + likb3
ki)× l̃ij × (b3

jd + b4
jd)

∑k(hokb1
kd + lokb3

kd) + ∑k(hokb2
kd + likb4

kd)
,

where yok = [Y]od, ∀ Y ∈ {H, L, H̃, L̃, B1, B2, B3, B4}

Proof. See the appendix.

Three remarks on this proposition are in order. The first is on the geometric interpretations
of the expressions. In part a) of the proposition,

[H, L](I − A)−1 = [HB1 + LB3, HB2 + LB4].

The first block of this, HB1 + LB3, is the sum of (the −θ power of) travel costs across all paths
from o to d that ends in d with mode H, which consists of those starting from o with mode H
(H × B1) and those starting from o with mode L (L× B3). The second block is the sum across all

3A sufficient condition for I− A to be invertible is that the spectral radius of L is less than one (Allen and Arkolakis,
2019). This will be case if the road network adjacency matrix is sparse and the routing elasticity θ is large.
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paths ending in d in mode L.
[
[H, L](I − A)−1

[
I
I

] ]
od

is thus the sum across all paths from o

to d.
The elasticity ∂ log(τod)

∂ log(t̃H
ij )

has an intuitive meaning, too. The denominator is simply the sum of

the −θ power of travel costs across all paths from o to d, of which there are four types based on
whether a path leaves o in H or L and whether it arrives in d in H or L. The numerator is the
sum across all paths that arrive in i in L and transfer to H before the next stop j, and then from
j using any mode to finally arrive at d, i.e., all routes that uses the transfer L → i → H → j. As
in Allen and Arkolakis (2019), this ratio corresponds to the fraction of trade costs spent on these
routes. Under the limit case of θ → ∞, this elasticity converges to the fraction of all trips from o
to d that goes through the L→ i→ H → j transfer.

Second, while in practice an improvement in transfer efficiency in location i likely affects the
goods and passengers transferring through i to all nearby locations, part b) of the proposition
focuses only on efficiency improvements that are ‘directional’, i.e., those that are directed to only
shipments to j from i. We note that this restriction is without loss of generality because any
comprehensive change can be written as a collection of ‘directional’ changes. For example, if we
assume that t̃H

ij = tH
ij δi, where δi is the efficiency of transshipment at location i, then we can build

on part b) of the proposition to derive ∂ log τod
∂ log δi

.
Third, this proposition offers a direct mapping from the network fundamental, given by

H, H̃, L, and L̃, to bilateral trade costs. Using the tools developed by Allen and Arkolakis
(2019), this module could be easily extended to allow for congestion along an edge i → j, or
congestion within a transshipment point i. This module can then be embedded in trade and
economic geographic frameworks to analyze how shipment flows and the aggregate welfare
react to changes in transfer costs. As an example, in the final part of this note, we illustrate
how we can use the proposition to derive analytically the welfare gains from an improvement in
transshipment efficiency.

The welfare effects of transshipment efficiency. The type of policy evaluations we are in-
terested in is a change in transshipment efficiency in i that simultaneously reduces t̃H

ij for all
destination j 6= i. For simplicity, we focus on a case where the first welfare theorem holds as in
Fan et al. (2019)

Let the aggregate welfare be W. The trade or economic geography block of the model usu-
ally implicitly determine W as a function of trade cost matrix τ. The first order effect of an
improvement in efficiency in transferring from L to H in location o is thus:

∆W = ∑
o,d

∂ log(W(τ))

∂ log(τod)
∆ log(τod)

= ∑
o,d

(∂ log(W(τ))

∂ log(τod)
·∑

j 6=i

(∂ log(τod)

∂ log(t̃H
ij )

∆ log(t̃H
ij )
))

,
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in which ∂ log(τod)

∂ log(t̃H
ij )

is characterized in Proposition 1, and ∂ log(W(τ))
∂ log(τod)

is associated with some observ-

able variables in the trade model (e.g., in an efficient model, this is associated with the value of
trade flows from o to d).

Using tools in Allen and Arkolakis (2019), it is also possible to derive the response in shipment
flows through rerouting in response to such a change transshipment efficiency.
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A Proof of the Proposition

Proof. Define X1 =
[

H L
]
≡
[

X1
H X1

L

]
. Then [X1

H ]od is the −θ power of the cost of going

from o to d in exactly one step, arriving in d via the H mode. Similarly, X1
L is the collection of

power of the cost of going from o to d in exactly one step, arriving in d via the L mode.
Suppose that Xn ≡

[
Xn

H Xn
L

]
to be such that [Xn

H ]od and [Xn
L]od is the sum of the −θ power

of cost of all paths going from o to d in exactly n step, arriving at d via mode H and mode L,
respectively. Then the sum across all paths going from o to d in exactly n + 1 step, arriving in d
via mode H is: Xn

H H + Xn
L H̃. The first term in this sum captures the paths arriving in one step

away from d via mode H and then continue via H to d; the second component captures the paths
arriving in one step away from d in L and then continue through H, thus incurring a transfer
cost. Similarly, the collection of all paths arriving at d via mode L is Xn

H L̃ + Xn
L L̃.

We can therefore express Xn recursively as:

Xn+1 =
[

Xn
H Xn

L

]
·
[

H L̃
H̃ L̃

]
= Xn ·

[
H L̃
H̃ L̃

]

The sum across all paths with any length n ≥ 1 is:

X ≡
∞

∑
n=1

Xn ·
[

I
I

]

= [H, L](I − A)−1

[
I
I

]
, where A =

[
H L̃
H̃ L

]
.
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This proves part a) of the proposition.
To prove part b) of the proposition, denote B ≡ (I − A)−1. Then we have for the expanded

routing matrix A

∂A
∂ log t̃H

ij
= −θ(t̃H

ij )
−θ

[
0 0

Eij 0

]

⇒ ∂B
∂ log t̃H

ij
=

∂(I − A)−1

∂ log t̃H
ij

= −(I − A)−1 ∂(I − A)

∂ log t̃H
ij

(I − A)−1 = −θ(t̃H
ij )
−θ B

[
0 0

Eij 0

]
B

⇒ ∂X
∂ log t̃H

ij
= −θ(t̃H

ij )
−θ [H, L]B

[
0 0

Eij 0

]
B

[
I
I

]
.

Now consider

B

[
0 0

Eij 0

]
B =

[
B1 B2

B3 B4

] [
0 0

Eij 0

] [
B1 B2

B3 B4

]

=

[
B2EijB1 B2EijB2

B4EijB1 B4EijB2

]
,

and for the o, dth entry of X,

xod = ∑
k
(hokb1

kd + lokb3
kd) + ∑

k
(hokb2

kd + lokb4
kd).

Therefore,

[ ∂X
∂ log t̃H

ij

]
od

=
[
− θ(t̃H

ij )
−θ [H, L]

[
B2EijB1 B2EijB2

B4EijB1 B4EijB2

] [
I
I

] ]
od

⇒ ∂ log xod

∂ log t̃H
ij

= −θ(t̃H
ij )
−θ

∑k(hokb2
ki + likb4

ki)× (b1
jd + b2

jd)

∑k(hokb1
kd + lokb3

kd) + ∑k(hokb2
kd + lokb4

kd)

= −θ
∑k(hokb2

ki + likb4
ki)× h̃ij × (b1

jd + b2
jd)

∑k(hokb1
kd + lokb3

kd) + ∑k(hokb2
kd + lokb4

kd)
.

And trade cost τod = c · x−1/θ
od . Therefore

∂ log τod

∂ log t̃H
ij

= −1
θ

∂ log xod

∂ log t̃H
ij

=
∑k(hokb2

ki + likb4
ki)× h̃ij × (b1

jd + b2
jd)

∑k(hokb1
kd + lokb3

kd) + ∑k(hokb2
kd + lokb4

kd)
.

We can similarly derive ∂ log(τod)

∂ log(t̃L
ij)

.
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