A bilateral monopoly model of profit sharing along the global supply chain

HuangNan Shen Jim*

* Department of Management, London School of Economics and Political Science. Contact Address: h.shen1@lse.ac.uk

I thank the comments and invaluable suggestions from David De Meza, Luis Garicano, John Sutton, Catherine Thomas, Ricardo Alonso, XiaoJie Liu, Eric Golson, KeZhou Xiao and many others. All the remaining errors are of my own.
Abstract

This paper investigates the firm-level division of the gains in the global supply chain and provides a new theoretical framework to explain how gains are divided among firms and interdependent nations within the chain. It constructs an economic model using a bilateral monopoly market structure to analyse how the average profitability varies with the stages in the chain. By introducing a vertical restraint known as quantity forcing, the double marginalization problem arising as a result of bilateral monopoly can be resolved. It demonstrates joint-profit maximizing contracts emerge under quantity forcing parameters whereby the Assembly and downstream Marketing firm eliminate the incentives for vertical integration.

This paper also shows the downstream marketing firm is more profitable than the upstream assembly firm if (and only if) both the capability and cost effect of Marketing firm dominates the two counterpart effects of Assembly firm. For the dominance of capability effect, the Marketing firm has to have higher monopsonist market power in the intermediate inputs market than in the final goods market where it acts as a monopolist. As a result, it could extract more surplus from Assembly firm rather than consumers. In terms of cost effect, the factor endowment structure differentials are important to the model. The labour intensive nature of the Assembly firm would lead it to the lower average product of labour, generating a lower level of profitability compared with downstream Marketing firm which is more capital intensive with higher average labour productivity.

Keywords: global supply chain, bilateral contracting choices, quantity forcing, bilateral monopoly, average profitability, capability effect, cost effect
1 Introduction

Since the 1980s, there has been a fragmentation of production across the globe which Baldwin refers to as the “unbundling” of production. (Baldwin, 2012). Although some of the current sequential production literature assumes perfect competition, monopolistic competition or oligopolistic competition in each sequential stage of the chain (Costinot et al, 2013; Ju and Su, 2013), this is far from what have been observed in reality. At each production stage in the chain, there is an exclusive relationship between the upstream and downstream firm, where each firm monopolizes the production stage they specialize in. The most illustrative example is the Apple’s supply chain where the firm monopolizes the upstream R&D stage and downstream Marketing stage whereas the Foxconn monopolizes the Assembly stage in the middle of the supply chain. (Chan, Pun and Selden, 2013). For the purposes of this paper we define the Marketing firm as a more general term which includes different sales activities after a product is finished assembly; these activities include advertising, distribution, after-sales service, logistics and so on.

This paper develops a theoretical model under a bilateral monopoly framework to derive how and under what conditions the gains from global trade are distributed. It assumes a bilateral monopoly market structure in which there is only one-buyer and one-seller transactional relationship along the chain. This inevitably leads to

2 The separation of product production into a series of component stages has been widely used as a division of labour to enhance the production efficiency since the 18th century. Economist Adam Smith first elucidated how division of labour within a factory could save the production time as well as the cost: however, at the time, there was no such separation of product production into various working procedures across through different countries.
problems of double marginalization in which the ex-post joint-profits of all firms producing along the chain could not be maximized.

In order to resolve this problem, we adopt the quantity forcing vertical restraint method to eliminate the double marginalization. Furthermore, by restricting the quantity to the level at which a vertically integrated firm would optimally set, the incentives for firms to vertically integrate would be also eliminated.

This paper also sheds new light on the micro-foundation of how gains are divided among interdependent nations in global supply chain. Recent trade literature on the divisions of gains in global trade has been concentrated on the income distribution of the chain at the country level without the concrete firm-level analysis. (Costinot and Fogel, 2010; Costinot et al, 2013; Basco and Mestieri, 2014; Verhoogen, 2008)

Generally, this literature has demonstrated income benefits for countries who participate in trade are unevenly distributed due to differences in countries’ productivities, exports mix, quality upgrading process and so on; however, this paper argues such an uneven distribution of gains in global trade can be attributed to firm-level reasons such as heterogeneity in market power between the intermediate goods and final goods market as well as the labour productivity differentials among different production stages in the chain. Firm-level analysis is particularly advantageous here as most of the country level trade is intra-industry trade or inter-industry trade, allowing

3 Basco and Mestieri (2014) found a convex relationship, the “Lorenz curve,” between world income distribution and the countries specializing at the intermediated production under the settings of heterogeneous productivity. Similarly, Sutton and Trefler link the wealth of a nation to its quality upgrading process of the exported goods. They argue a comparative advantage exists with respect to the quality of goods as well as the coexistence between high quality producers and low quality producers induced by the imperfect competition; an inverted U-shaped relationship between countries’ GDP per capita and their exports mix emerges.
this paper to provide a more unified framework than previous ones.4

Whereas most of the current trade papers focus on the consumption side gains within firms’ vertical networks (Bernard and Dhingra, 2015; Fally and Hillberry, 2014; Ju and Su, 2013), this paper provides a unified framework in which both the consumption side gains are measured by firms’ capability effect (market power in the final good and intermediate good markets) and production side gains are measured by firms’ cost effect (labor productivity and factor endowment structure).

2 Empirical Motivation

The principles of comparative advantage derived from Classical H-O trade model indicate that once developing economy firms (with an abundance of unskilled labors and the scarcity of capital) become global trade partners with firms from advanced economies (with an abundance of skilled labors as well as capital), there will be a rise in demand for unskilled labors; thus causing a cross-country convergence in wages. However, whether the convergence effect exists at the firm-level especially under the context of global supply chain still remains unanswered in both the empirical and theoretical literature. Shen Liu and Deng (2016) empirically show Marketing firms in advanced economies are not necessarily more profitable than Chinese midstream Assembly firms. Figure 1 below shows how the gains are unevenly distributed between Chinese manufacturers and Marketing firms from advanced economies in both the

4 Lu(2004) and Ishii and Kei-Mu Yir(1997) explain there are two types of specialization in the trade literature, “horizontal specialization” where specialization is operated among different countries producing different final goods and services; and “vertical specialization” where companies control their entire supply chain. This paper focuses on vertical specialization. For the further details of the difference between horizontal specialization and vertical specialization, consult these relevant papers.
shoes and car industry production chains.

Figure 1: Divisions of the gains in Chinese shoes and cars supply chains

Sources: H.Shen Jim, X.Liu and Kent Deng (2016)

The rest of the paper is organized as follows. Section III provides the basic explanation for the theoretical model; which is then explained and solved in Section IV. The final section provides the conclusion and some notes on possible future research.

3. Model

3.1 Supply Chain

Consider a global supply chain which consists of 2 (country) firms and where each (country) firm only specializes at one particular stage within the chain. Put another way, we exclude all situations where more than one firm specializing at a particular stage and where there is no competition among firms at a particular stage. This then leads to

5 The vertical axis of these two graphs measure the profitability of firms locating at different stages in the chains. Shen, Liu and Deng (2016) use the inverse value of P-E ratio to be the proxy variable for profitability. The x-axis is the production stage ranging from R&D, Assembly and finally to Marketing stage. The part of the above two graphs we are interested in is just the Assembly stage and Marketing stage. For labor-intensive shoes industry, downstream Marketing firm is more profitable than midstream Assembly whereas for capital-intensive car industry, the opposite is true. In this paper, we will argue that such factor endowment differentials across industries are the crucial factor to understand different patterns of division of the gains in the global supply chains. The study by Sutton and Trefler (2016) provides a very strong country-level empirical motivation for this paper. They detect the channel through which quality of goods exported by advanced economies is higher than that of firms in emerging economies (quality effect), while GDP per worker is also higher for firms specializing at these economies (wage effect). Overall, the wage effect may dominate the quality effect, thus generating the low exports values as well as declining profitability of firms in these economies. Hence, an inverted U-shaped relationship between countries’ GDP per capita and their exports mix emerges.
the one-to-one injective mapping relationship among countries, firms and stages.6

To produce the final good, there exists a finite and bounded sequence of stages, indexed by \(S = (s_1, s_2) \) where \(s_i \in S, \ 1 \leq i \leq 2 \). The \textit{stage} \(i \) is indexed by \(S_i \). Now the notation \(i \) is used such that the whole global supply chain could be split into the 2 stages including both upstream assembly firm (manufacturer) and downstream (retailer) as shown in the following:

\[
\begin{cases}
\text{Upstream manufacturer if } i = 1 \\
\text{Downstream retailer if } i = 2
\end{cases}
\]

3.2 Contracting choices (Quantity forcing)

By assuming bilateral and joint-profit maximizing contracts, we eliminate the incentives for firms to vertically integrate in the chains by the means of quantity forcing. In line with Bernard and Dhingra (2015), the model offered by this paper embeds the bilateral and joint-contracting choices developed by Hart and Tirole (1990) into the sequential production framework to resolve the problems of double marginalization and lower joint-profitability caused by the bilateral monopoly market structure of the chain.

This forcing quantity is imposed at the level is tantamount to which a vertically-integrated firm in the chain would set to maximize the joint-profits. Through the quantity forcing, each of these 2 firms could not reduce their respective output for the purpose of marginalizing. This leads to the first assumption for this model:

\textbf{Assumption 1:} The output in all stages is equal \(q_1 = q_2 = q^* \).7

6 The model in this paper is in line with the hierarchy assignment model developed by Lucas (1978), Kremer (1993), Garicano and Rossi-Hansberg (2004, 2006), only we incorporate their framework into the context of sequential production.

7 This condition for quantity also implies that we do not consider the ‘mistake rate’ (error rate) during the process of sequential production. Each firm in the chain, has a fixed proportional output at the inter-stage level. This implies the supply function for each firm at each stage is fixed. The fixed proportion of output at each sequential stage is also an assumption initially used by Stigler (1951) to study the evolution of production over the life cycle of an industry.
We follow the P. Antras and D. Chor’s approach in 2013 to characterize the preference of consumers. The final good is a differentiated variety from the perspective of the individual consumer and belongs to an industry where firms produce a continuum of goods. The following utility function represents consumers’ preference, which features a constant of substitution across these varieties:

$$U = \left(\int_{\omega \in \Omega} q_2(\omega)^{\rho} d\omega \right)^{\frac{1}{\rho}}$$

Where $\rho \in (0,1), q_2(\omega)$ is the quality-adjusted output of variety ω and Ω is the set of varieties consumed.

Thus, the monopolistic downstream marketing firm producing variety ω will face a demand function in the final goods market as follows:

$$q_2(\omega) = A p(\omega)^{\frac{1}{1-\rho}}$$

where $A>0$ indicating the industry demand shifter, which is exogenous.

Denote $\epsilon_2 = \frac{1}{1-\rho}$ Where ϵ_2 be the price elasticity of demand in the final good market. It is obvious to see that the demand function faced by the downstream marketing firm in the final goods market is in the multiplicative form, which treats the market power that possessed by downstream firm as the vital part in our current consumption side of the story.

3.4 Production

Due to the indeterminacy of the prices charged by the vertically linked firms under the setting of bilateral monopolistic structure, the bargaining power of each firm has to be introduced to determine the final negotiated price among vertically-linked firms.
We denote $\lambda_i = (\lambda_1, \lambda_2)$ as a bounded set of the distribution of bargaining power of each of these 2 firms in the chain. Where $\lambda_1 + \lambda_2 = 1$

Moreover, in this paper, firms locating at sequential of stages with distinct types (different productivity measured by different firms’ cost capacity) will have different measure of desirable physical characteristics of goods (such as quality). Such distinct characteristics are achieved through different level of enhanced advertising expenditure (Sutton, 1991). This means firms producing more knowledge-intensive goods such as those involved in the Marketing stage would expend more money in advertising, whereas those producing less knowledge-intensive goods such as firms locating in the assembly sector would spend less money advertising. Sequence of stages in the chain are characterized by distinct quality level of goods being provided. Quality upgrading requires a different level of sunk cost for firms to invest in order to maintain their viability in the chain. Such endogenous sunk cost could be denoted as $F(s_i)$, where $i = 1, 2$

The term $F(s_i)$ represents the endogenous sunk cost for the firm to be viable at stage i. This paper shows firms specializing at more knowledge-intensive stages tend to spend more money on advertising, thus generating higher level of endogenous sunk cost whereas firms specializing at less knowledge-intensive stages such as Assembly stage would spend much less money on the advertising which leads to a lower level of endogenous sunk cost. Hence, it leads to our final assumption of this paper:

Assumption 2. (Endogenous sunk cost assumption)

$$F(s_2) - F(s_1) > \frac{1}{2}$$
For a given chain, it is possible to formulate the equilibrium as 2 equilibrium profit functions for each of vertically linked firm involved in the chain:

\[
\begin{align*}
\pi_{\text{assembly}} &= p^*(s_1, q^*)q^* - C(s_1, q^*) \\
\pi_{\text{marketing}} &= p_m(q^*)q^* - p^*(s_1, q^*)q^* - C(s_2, q^*)
\end{align*}
\]

Where \(C(s_i, q^*) \) is the total cost of firm specializing at stage \(i \). The demand function for the intermediate input market is represented by \(p(s_1, q) \). \(p^*(s_1, q) \) is the price between upstream Assembly firm and downstream Marketing firm after negotiation. \(p_m(q^*) \) is the price charged to consumers in the final good market.

4. Solution

4.1 Assembly stage

4.11 Cost Minimization

We define the constrained cost minimization problem for the Assembly firm as the following:

\[
C(w, r, s_1) = \min_{L(s_1), K(s_1)} w(s_1)L(s_1) + rK(s_1) + F(s_1)
\]

subject to \(q_1 = L(s_1)^\alpha(s_1)K(s_1)^\beta(s_1) \) where production function is in Cobb-Douglas type.

We construct the Lagrangian function as the following:

\[
\phi_r(w, r, q, s_1) = w(s_1)L(s_1) + rK(s_1) + F(s_1) - \lambda [L(s_1)^\alpha(s_1)K(s_1)^\beta(s_1) - q_1]
\]

Take the derivative (2) with respect to \(L(s_1) \), \(K(s_1) \) and \(\lambda_r \) respectively and let them equal to 0, we obtain the following first order condition:
\[
\begin{aligned}
 w(s_1) &= \lambda \alpha(s_1) L(s_1) \alpha(s_1)^{-1} K(s_1) \beta(s_1) \\
 r &= \lambda \beta(s_1) K(s_1) \beta(s_1)^{-1} L(s_1) \alpha(s_1) \\
 q_1 &= L(s_1) \alpha(s_1) K(s_1) \beta(s_1)
\end{aligned}
\]

(3)

Divide first equation of the (3) by the second equation of the (2), the Lagrangian multiplier \(\lambda \) is cancelled to obtain the following relationship between capital input and labour input:

\[
K(s_1) = \left[\frac{\beta(s_1) w(s_1)}{\alpha(s_1) r} \right] L(s_1)
\]

(4)

Plug (4) into the production function which is the third equation of the (3), we obtain the conditional input demand for the labour for this Assembly firm:

\[
L(s_1, q_1) = \left[\frac{\alpha(s_1) r}{\beta(s_1) w(s_1)} \right]^{\frac{\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} q_1^{\frac{1}{\alpha(s_1) + \beta(s_1)}}
\]

(5)

Similarly, we can obtain the conditional input demand for the capital for this Assembly firm:

\[
K(s_1, q_1) = \left[\frac{\beta(s_1) w(s_1)}{\alpha(s_1) r} \right]^{\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)}} q_1^{\frac{1}{\alpha(s_1) + \beta(s_1)}}
\]

(6)

So we obtain the minimized cost function for the Assembly firm in the supply chain:

\[
C(L(s_1, q_1), K(s_1, q_1), s_1) = w(s_1) \left[\frac{\alpha(s_1) r}{\beta(s_1) w(s_1)} \right]^{\frac{\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} q_1^{\frac{1}{\alpha(s_1) + \beta(s_1)}} + r \left[\frac{\beta(s_1) w(s_1)}{\alpha(s_1) r} \right]^{\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)}} q_1^{\frac{1}{\alpha(s_1) + \beta(s_1)}} + F(s_1)
\]

(7)

which can be further reduced to the following form:

\[
C(L(s_1, q_1), K(s_1, q_1), s_1) = q_1^{\frac{1}{\alpha(s_1) + \beta(s_1)}} \left[w(s_1) \left[\frac{\alpha(s_1)}{\beta(s_1) r} \right]^{\frac{\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \right]^{\frac{\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} + \left(\frac{\alpha(s_1)}{\beta(s_1)} \right)^{\frac{1}{\alpha(s_1) + \beta(s_1)}} + F(s_1)
\]

(8)

Now we could derive the marginal cost curve for the Assembly firm:
MC \left(s_1, q_1 \right) = \frac{1}{\alpha (s_1) + \beta (s_1)} q_1 \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} - \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} \right] \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} \right] + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} (9)

4.12 Profit Maximization

We are now going to state the profit maximization problem for the Assembly firm by using the derived cost function above to find profit maximizing equilibrium price set by the Assembly firm.

Max \pi_{\text{Assembly}} \left(w(s_1), r, q_1, s_1 \right) = p(s_1, q_1) q_1 - C(L(s_1, q_1), K(s_1, q_2), s_1) - F(s_1) = p(s_1, q_1) q_1 - \frac{q_1}{\alpha (s_1) + \beta (s_1)} \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} \right] \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} \right] + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} (10)

Take the derivative of (10) with respect to \(q_1 \), we obtain the following:

\frac{\partial p_a (s_1, q_1)}{\partial q_1} = \frac{1}{\alpha (s_1) + \beta (s_1)} q_1 \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} - \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} \right] \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} \right] + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} (11)

Factoring out the \(p_a (s_1, q_1) \) on the left side, we obtain profit maximizing equilibrium price set by the Assembly firm in the chain:

\[p_a (s_1, q) = \frac{1}{\alpha (s_1) + \beta (s_1)} q_1 \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} - \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} \right] \left[\frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} \right] + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\alpha (s_1)}{\alpha (s_1) + \beta (s_1)} + \left(\frac{\alpha (s_1)}{\beta (s_1)} \right) \frac{\beta (s_1)}{\alpha (s_1) + \beta (s_1)} (12) \]

Where \(\epsilon_1 \) is the price elasticity of inputs market supply at Assembly stage and this parameter measures the marketing firm’s monosoponist market power.\(^8\)

\(^8\) In modern I-O theory the monopolistic seller does not have control of the supply curve. However, this is not the
Let \(q_1 = q^* \) be the forcing quantity under the bilateral contracts between the Marketing firm and Assembly firm, then profit maximizing price level set by the Assembly firm at the forcing quantity \(q^* \) according to the bilateral contracts is:

\[
p_a(s_1, q^*) = \frac{1}{\alpha(s_1) + \beta(s_1)} (q^*)^{\frac{1-a(s_1)-\beta(s_1)}{a(s_1)+\beta(s_1)}} w(s_1)^{\frac{\alpha(s_1)}{a(s_1)+\beta(s_1)}} \left[\frac{\beta(s_1)}{\beta(s_1) + \beta(s_1)} \right] + \left(\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \right) \frac{\beta(s_1)}{\beta(s_1) + \beta(s_1)} + \epsilon_1 \left(\frac{\epsilon_1}{\epsilon_1 - 1} \right)
\]

\[(13)\]

Lemma 1 (second order condition check) Under bilateral Monopoly, the upstream Assembly firm would maximize its profits at the equilibrium price level implied by (13) if and only if it produces at the production level which exhibits increasing return of scale. \((\alpha(s_1) + \beta(s_1) > 1)\)

For the proof of Lemma 1, please see Appendix A.

5.1 Marketing Stage

Nonetheless, the Assembly firm cannot obtain above profit-maximizing position implied by (13) because it does not sell in a market with many buyers and each of buyers would be incapable of affecting the prices by his purchases. The Assembly firm...
is selling to a single retailer (Marketing firm) who can obviously affect the market price by this input purchasing decisions.

Hence, as the monopsonist Marketing firm is aware of its market power and he will set price terms upon the Assembly firm. The increase in the expenditure of the Marketing firm resulting from the rises in his input purchasing is shown by the curve ME in figure 2. In other words, curve ME is the marginal cost of inputs for the monopsonist-Marketing firm.

Thus in order to maximise its profit, the Marketing firm will purchase additional units of X until his marginal expenditure is equal to his price, which is determined by the demand curve D as shown in the figure 2. The price charged by the downstream monopsonist Marketing firm could be found from the supply curve (marginal cost curve) of the monopolistic Assembly firm which is tantamount to the average expenditure curve of the downstream marketing firm implied by the point A.

Figure 2 Bilateral Monopoly under quantity forcing in the supply chain
The equilibrium point of the Marketing firm is implied by point A in the figure 2 and its price is implied by p_m. Similarly, the equilibrium point of the Assembly firm is implied by point B where the demand curve of Assembly firm and its marginal expenditure curve intersect with each other. Its setting price is indicated by p_a.9

Hence we plug the forcing quantity q^* into the marginal cost curve faced by the Assembly firm indicated by (9) to obtain the explicit expression for the price level charged by the downstream Marketing firm upon the Assembly firm:

$$P_m = MC(s_1, q^*) = \frac{1}{\frac{a(s_1)}{\beta(s_1)}} \left(q^* \right)^{1 - \frac{1}{\frac{a(s_1)}{\beta(s_1)}}} \left[\frac{\alpha(s_1)}{\beta(s_1)} \frac{\beta(s_1)}{\alpha(s_1)} \frac{\beta(s_1)}{\beta(s_1)} + \right]$$

In order to resolve the indeterminacy of the prices both agreed by the upstream Assembly firm and the downstream Marketing firm, the bargaining power is introduced here to capture what is the final negotiated price level agreed between Marketing firm and Assembly firm. It is asserted the negotiated price level in relation to the bargaining power of each side of the market is linear:

$$p^*(s_1, q^*) = \lambda_1 p_a(s_1, q^*) + \lambda_2 P_m(s_1, q^*)$$

\textit{(See footnote for the proof of this linearity)}

\textbf{footnote for the proof of this linearity}:

9 The demand curve could be treated as the average revenue curve of the assembly firm which measures its total value of marginal product.

10 The proof of the linear relationship between the final negotiated price level and two different price levels respectively charged by the monopolist and the monopolonist is as follows: start from the method proposed by Glen Wely (2012), suppose if the upstream Assembly firm sells his one unit of intermediate inputs at the negotiated price p^*. Given that the disagreement payoffs for both Marketing firm and Assembly firm is 0, then the payoff function for the upstream marketing firm is $U_a(p^* - p_m) = (p^* - p_m)\lambda_1$. Similarly, $U_m(p_a - p^*) = (p_a - p^*)\lambda_2$ is the payoff function for the midstream Assembly firm. p_m is the willingness to pay for the monopolonist marketing firm whereas p_a is the price charged by the monopolist Assembly firm. Also, $\lambda_1 + \lambda_2 = 1$. The “Nash product” therefore is $\max_{p\leq p^*} (p^* - p_m)\lambda_1(p_a - p^*)\lambda_2$ s.t $p_m \leq p^* \leq p_a$ We could just maximize the “Nash product” without constraint if the solution to this product satisfies the constraint. So differentiate the objective function wrt p^* and setting equal to 0 gives $\lambda_1(p^* - p_m)\lambda_1^{-1}(p_a - p^*)\lambda_2 = \lambda_2(p^* - p_m)\lambda_1(p_a - p^*)\lambda_2^{-1}$. Dividing both sides by $\lambda_1\lambda_2$ and solving the result gives p^*.
Where \(\lambda_1 + \lambda_2 = 1 \)

\(\lambda_1 \) is the bargaining power of the upstream Assembly firm and \(\lambda_2 \) is the bargaining power of the downstream Marketing firm.

Denote \(\theta_1 = \left[\frac{\alpha(s_1)}{\alpha(s_1)+\beta(s_1)} \right] \), \(\theta_2 = \left[\frac{\alpha(s_1)}{\alpha(s_1)+\beta(s_1)} \right] + \left[\frac{\alpha(s_1)}{\alpha(s_1)+\beta(s_1)} \right] \).

We obtain the explicit expression for the negotiated price level agreed by the Assembly firm and Marketing firm:

\[
p^*(s_1, q^*) = \begin{cases} \frac{\lambda_1}{\alpha(s_1)+\beta(s_1)} (q^*)^{1-\alpha(s_1)-\beta(s_1)} [\theta_1] \times [\theta_2] \times [s_1 \times [s_1^{-1}]} + \\
\frac{\lambda_2}{\alpha(s_1)+\beta(s_1)} (q^*)^{1-\alpha(s_1)-\beta(s_1)} [\theta_1] \times [\theta_2] \end{cases}
\]

(16)

5.11 Cost Minimization

In order to get the explicit expression for the equilibrium price set by the Marketing firm towards consumers in the final market, we consider the following constrained cost minimization problem:

\[
\begin{align*}
\min_{L(s_2),K(s_2)} C(w(s_2),r,s_2) &= w(s_2) L(s_2) + rK(s_2)+F(s_2) \\
\text{s.t } q_2 = L(s_2)^{\alpha(s_2)} K(s_2)^{\beta(s_2)}
\end{align*}
\]

(17)

of this first order condition by \((p' - p_m)^{\lambda_1-1} (p_a - p')^{\lambda_2-1} \) gives \(\lambda_1(p_a - p') = \lambda_2(p' - p_m) \). Rearranging this expression and solving for \(p' \) leads to \(p' = \frac{\lambda_1}{\lambda_1+\lambda_2} p_a + \frac{\lambda_2}{\lambda_1+\lambda_2} p_m \). This implies that \(p' = \lambda_1 p_a + \lambda_2 p_m \).
Here we assume labour market is perfectly competitive and the labor supply is perfectly elastic. So the monopsonist is non-discriminating and it only sets the single level of wage \(w(s_2) \) to all workers.

We can also construct the following Lagrangian function to solve the constrained optimization problem shown by (17):

\[
\phi_\alpha(w, r, q_2, s_\alpha) = w(s_2)L(s_2) + rK(s_2)+F(s_2)-\lambda_\alpha\left[L(s_2)\alpha(s_2)K_\beta(s_2) - q_2 \right]
\]

(18)

Similar to the derivation of the cost minimized conditional input demand for labor and capital for the Assembly firm, it is possible to obtain the following expression of the cost minimized conditional input demand for labor and capital for the downstream Marketing firm:

\[
\begin{align*}
L^*(s_2, q_2) & = \frac{a(s_2)r}{\beta(2)w(s_2)} \frac{\beta(s_2)}{a(s_2)+\beta(s_2)} q_2 \frac{1}{\alpha(s_2)+\beta(s_2)} \\
K^*(s_2, q_2) & = \frac{\beta(s_2)w(s_2)}{a(s_2)r} \frac{a(s_2)}{\alpha(s_2)+\beta(s_2)} q_2 \frac{1}{\alpha(s_2)+\beta(s_2)}
\end{align*}
\]

Hence the minimized total cost function for the Marketing firm could be represented as the following:

\[
C(L^*(s_2, q_2), K^*(s_2, q_2), s_2) = q_2 \frac{1}{\alpha(s_2)+\beta(s_2)} \left[w(s_2) \frac{a(s_2)}{a(s_2)+\beta(s_2)} \frac{\beta(s_2)}{\alpha(s_2)+\beta(s_2)} \left(a(s_2) \right) \frac{\beta(s_2)}{\alpha(s_2)+\beta(s_2)} \right] + F(s_2)
\]

(19)

Denote \(\theta_3 = \left[w(s_2) \frac{a(s_2)}{a(s_2)+\beta(s_2)} \frac{\beta(s_2)}{\alpha(s_2)+\beta(s_2)} \right] \), \(\theta_4 = \left[\frac{a(s_2)}{\alpha(s_2)+\beta(s_2)} \frac{\beta(s_2)}{\alpha(s_2)+\beta(s_2)} + \frac{a(s_2)}{\alpha(s_2)+\beta(s_2)} \right] \)

So we have \(C(L^*(s_2, q_2), K^*(s_2, q_2), s_2) = q_2 \frac{1}{\alpha(s_2)+\beta(s_2)} \times \theta_3 \times \theta_4 + F(s_2) \)

(20)
Thus, the marginal cost curve for this marketing firm is:

\[
\frac{\partial C(L^*(s_2, q_2), K^*(s_2, q_2), s_2)}{\partial q_2} = ME_m = MC_m = \frac{1}{a(s_2) + \beta(s_2)} q_2 \frac{1}{a(s_2) + \beta(s_2)} \times \theta_3 \times \theta_4
\]

(21)

5.12 Profit Maximization

The profit maximization problem for the Marketing firm can be determined by
using the derived cost function implied by (20) to find its optimal price.

\[
\text{Max}_{q_2} \pi_{\text{marketing}}(w(s_2), r, q_2, s_2) = p_f(s_2, q_2)q_2 - C(L^*(s_2, q_2), K^*(s_2, q_2), s_2) - F(s_2) - p^*(s_1, q^*)q_2
\]

(22)

Solve this by taking the derivative of (22) with respect to \(q_2 \) and let it equal to 0:

\[
p_f(s_2, q_2) + \frac{\partial p(s_2, q_2)}{\partial q} q_2 = \frac{1}{a(s_2) + \beta(s_2)} q_2 \frac{1}{a(s_2) + \beta(s_2)} \times \theta_3 \times \theta_4 - \left\{ \frac{\lambda_1}{a(s_1) + \beta(s_1)} \left(q^* \right) \frac{1}{a(s_1) + \beta(s_1)} \times \theta_1 \right\} \times
\]

\[
[\theta_2] \times \left[\frac{\epsilon_1}{\epsilon_1 - 1} \right] - \left\{ \frac{\lambda_2}{a(s_1) + \beta(s_1)} \left(q^* \right) \frac{1}{a(s_1) + \beta(s_1)} \times \theta_1 \right\} \times \left[\theta_2 \right] = 0
\]

(23)

Factoring out the \(p_f(s_2, q) \) on the left side, we obtain profit maximizing

\[
p_f(s_2, q_2) = \left\{ \frac{1}{a(s_2) + \beta(s_2)} q_2 \frac{1}{a(s_2) + \beta(s_2)} \times \theta_3 \times \theta_4 \right\} + \left\{ \frac{\lambda_1}{a(s_1) + \beta(s_1)} \left(q^* \right) \frac{1}{a(s_1) + \beta(s_1)} \times \theta_1 \times \left[\theta_2 \right] \times \left[\frac{\epsilon_1}{\epsilon_1 - 1} \right] \right\} +
\]

\[
\left\{ \frac{\lambda_2}{a(s_1) + \beta(s_1)} \left(q^* \right) \frac{1}{a(s_1) + \beta(s_1)} \times \left[\theta_1 \right] \times \left[\theta_2 \right] \right\} \times \left[\frac{\epsilon_2}{\epsilon_2 - 1} \right]
\]

(24)

Where \(\epsilon_2 \) is the price elasticity of demand in the final market.

Hence at the forcing quantity \(q^* \), marketing firm in the final good market has to charge

the following equilibrium price towards the consumers:
Lemma 2: (second order condition check) Under bilateral monopoly, the downstream Marketing firm would maximize its profits at the equilibrium price level implied by (25) if and only if it produces at the production level which exhibits either constant return of scale ($\alpha(s_2) + \beta(s_2) = 1$) or increasing return of scale. ($\alpha(s_2) + \beta(s_2) > 1$).

For the proof of Lemma 2, please see Appendix B.

6. Simultaneous determination of forcing quantity along the chain

Under quantity forcing, a sales restriction exists among the firms in the chain. This is a level of sales quota q^* which all firms in the chain are contracted. This satisfies the nature of joint-profits maximization according to the optimal quantity level set by a vertically integrated firm in the chain.

In order to obtain the expression for the ideal quantity forcing, we first identify the joint-profit maximizing problem faced by a vertically integrated firm in the chain:

$$\max_{q} \frac{\pi_{\text{joint}}}{q} = \pi_{\text{assembly}} + \pi_{\text{marketing}} = p_f(q)q - C(s_1, q) - F_{\text{assembly}}(s_1) - C(s_2, q) - F_{\text{marketing}}(s_2)$$

(26)

Where q is the optimal level of quantity set by the vertically integrated firm in the chain. This leads to the first proposition in this paper:

Proposition 1: Under the bilateral and joint-profit maximizing contracting choices in which the quantity restrictions are imposed upon all the firms producing along the
chain such that double marginalization problem could be avoided, the optimal forcing quantity must satisfy the following condition:

\[
\frac{1}{(A)\pi(q^*)^{-\frac{1}{\epsilon_2}} = \left\{ \frac{1}{\alpha(s_1) + \beta(s_1)} \left((q^*)^{-\frac{1}{\alpha(s_1) + \beta(s_1)}} \times \epsilon_2 \times \theta_2 \right) + \frac{1}{\alpha(s_2) + \beta(s_2)} \left((q^*)^{-\frac{1}{\alpha(s_2) + \beta(s_2)}} \times \epsilon_3 \times \theta_4 \right) \right\}
\]

For the proof of Proposition 1, please see Appendix C.

7. Equilibrium profits

To derive under what condition the average profitability of upstream Assembly firm (manufacturer) is higher than that of downstream Marketing firm (retailer), we need to identify the respective equilibrium profits expression for the upstream firm and downstream one. For the upstream manufacturer, its equilibrium profits could be stated as the following:

\[
\pi_{assembly} = p^*(s_1, q)q^* - C(s_1, q^*) = \left\{ \frac{\lambda_1}{\alpha(s_1) + \beta(s_1)} \left((q^*)^{-\frac{1}{\alpha(s_1) + \beta(s_1)}} \times \epsilon_2 \times \theta_2 \right) + \frac{1}{\alpha(s_2) + \beta(s_2)} \left((q^*)^{-\frac{1}{\alpha(s_2) + \beta(s_2)}} \times \epsilon_3 \times \theta_4 \right) \right\}
\]

(27)

(27) could be further reduced to the following form:

\[
\pi_{assembly} = \left\{ \frac{\lambda_1}{\epsilon_2} + 1 \right\} \times \frac{1}{\alpha(s_1) + \beta(s_1)} \times q^* \times [\theta_1] \times [\theta_2] - \left\{ (q^*)^{-\frac{1}{\alpha(s_1) + \beta(s_1)}} \times [\theta_1] \times [\theta_2] - F(s_1) \right\}
\]

(28)

Dividing \(q^* \) by both sides, we obtain the expression of the average profitability function for the upstream Assembly firm:

\[
\frac{\pi_{assembly}}{q^*} = \left\{ \frac{\lambda_1}{\epsilon_2} + 1 \right\} \times \frac{1}{\alpha(s_1) + \beta(s_1)} \times [\theta_1] \times [\theta_2] - \left\{ (q^*)^{-\frac{1}{\alpha(s_1) + \beta(s_1)}} \times [\theta_1] \times [\theta_2] + \frac{F(s_1)}{q^*} \right\}
\]

Cost effect of upstream Assembly firm

\[
\text{variable cost effect}
\]

Endogenous sunk cost effect
Similarly, we can derive the expression of the average profitability function for the downstream Marketing firm:

\[
\frac{\pi_{\text{marketing}}(q^*)}{q^*} = p_m(q^*) - p^*(s_1, q^*) - \frac{c_2(s_2, q^*)}{q^*} = \left\{ \frac{1}{\alpha(s_1) + \beta(s_1)} \times (q^*)^{\alpha(s_1) \beta(s_1)} \times [\theta_1] \times [\theta_2] \times \left[\frac{1}{\alpha(s_1) + \beta(s_1)} \times \frac{1}{s_1} - \frac{1}{s_2} \right] \right\} - \left\{ \right. \\
\left. \frac{F(s_2)}{q^*} \right\}
\]

\[
\text{Proposition 2: Under joint-profit maximizing contracting choices as well as the normalization of forcing quantity } q^* = 1, r=1, \text{ the average profitability of the downstream Marketing firm is higher than that of the upstream Assembly firm if and only if}
\]

1. \(\varepsilon_1 < \varepsilon_2 \)

2. \[
\frac{1}{L(s_1, 1)} < \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \right\}^{\beta(s_1)} \times \left[\frac{1}{\alpha(s_1) + \beta(s_1)} \right] \text{ for } \alpha(s_1) + \beta(s_2) = 1
\]

3. \[
\frac{1}{L(s_2, 1)} \times \left[\frac{\beta(s_2)}{\alpha(s_2) + \beta(s_2)} \right] \times \left[\frac{1}{L(s_1, 1)} \right] \text{ for } \alpha(s_2) + \beta(s_2) > 1
\]

In summary, when both capability effect and cost effect of the downstream Marketing firm dominates the counterpart effects of the upstream Assembly firm.

For the proof of Proposition 2, please see Appendix D.

Proposition 2 implies that the downstream Marketing firm is more profitable than the upstream Assembly firm when both capability effect and cost effect of Marketing firm have to dominate the counterpart effects of Assembly firm. Regarding the
dominance of capability effect, the Marketing firm has to have lower monopolistic
market power in the final market compared with that of the monoposonist market power
in the intermediate input market. This makes sense as if it has higher monoposonist
market power: it can then extract additional surplus from the upstream Assembly firm.

Secondly, in terms of the dominance of the cost effects, if the downstream
marketing firm exhibits constant returns to scale, the marketing firm could earn higher
level of profitability if and only if the Assembly firm is very labour intensive. This
implies the downstream firm faces a constant long-run average cost and for the
Assembly firm it implies the amount of labour it employed \(L(s_1,1) \) is very large.
When the assembly firm employs excessive amount of labours, the average product of
the labour of the Assembly firm would fall. This paper also assumed the gap between
the levels of endogenous sunk cost spending across upstream and downstream stage
must be big enough that narrowing this gap is not going to be a valid comparative static.
The same situation applies to the value of \(\alpha(s_1) + \beta(s_1) \) as we have restricted our
attention to constant returns of scale, so varying this value as well would be an invalid
comparative static.

If Marketing firm exhibits increasing returns to scale, the Marketing firm is more
capital-intensive and has less labour; it becomes more profitable than Assembly firms
as its average labour productivity is higher. On the other hand, it is easy to see that once
the Assembly firm employs excessive amount of labour, then the right hand side in the
third part of proposition 2 becomes smaller, which increases the inequality.
8. Conclusion

This paper provides a first theoretical look at the profit sharing along the global supply chains at the firm-level from both consumption and production perspective. The divisions of the gains in global supply chains, as one of the most important phenomena so far during the process of globalization, has not been studied in a unified framework. The literature either focuses on the income distribution among interdependent nations at the country level or a firm-level analysis concentrated on the consumption side gains such as the market power.

From the theories posed in this paper it is possible to reach a number of important conclusions, including the downstream Marketing firm is more profitable than the upstream Assembly firm if, and only if, Marketing firm has lower monopolistic market power in the final goods market compared with the intermediate input market. In such a situation it would extract higher surplus from the upstream Assembly firm rather than consumers. Regarding the production side gains, if Marketing firm exhibits the constant return of scale, downstream Marketing firm’s cost effect dominates the Upstream Assembly firm’s cost if, and only if, Assembly firm is excessively labour intensive; this leads to the lower average product of labour compared with upstream Marketing firm.

Since the downstream Marketing firm is more capital-intensive and hires more skilled labour (and increasing returns to scale), its average product of labour is therefore high enough to maintain a higher level of profitability compared with –Upstream Assembly firm.
There are considerable prospects for the future research, divided into two areas: one is the technical aspect. It is possible to extend the model into the 3 production stages case in which R&D stage is also included. It was not possible to examine this here because this paper is constrained. The other aspect could be more methodology-oriented, in which researchers may use other contracting choices apart from the quantity forcing such as two-part tariff or resale price maintenance.
References

Appendix

Proof of Lemma 1:

First of all, we begin the proof by taking the second order condition of the profit function and let it smaller than 0. we then could obtain the following condition:

\[
\frac{\partial p(s_1, q)}{\partial q} - \frac{(1-\alpha(s_1)-\beta(s_1))}{[\alpha(s_1)+\beta(s_1)]^2} (q^*) \left(\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1)+\beta(s_1)} \right) \times (\theta_1) \times (\theta_2) \times \left[\frac{\epsilon_1}{\epsilon_1-1} \right] < 0 \tag{A.1}
\]

Where \(\theta_1 = \left[w(s_1)^{\alpha(s_1)+\beta(s_1)} \right] \), \(\theta_2 = \left[\left(\frac{\alpha(s_1)}{\beta(s_1)} \right)^{\alpha(s_1)\beta(s_1)} + \left(\frac{\alpha(s_1)}{\beta(s_1)} \right)^{\beta(s_1)\alpha(s_1)} \right] \)

Since \(q^* \) is a forcing quantity, thus I could also denote \(k = (q^*)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1)+\beta(s_1)}} \) which is a parameter.

So (A.1) becomes:

\[
\frac{\partial p(s_1, q)}{\partial q} - \frac{(1-\alpha(s_1)-\beta(s_1))}{[\alpha(s_1)+\beta(s_1)]^2} \times k \times (\theta_1) \times (\theta_2) \times \left[\frac{\epsilon_1}{\epsilon_1-1} \right] < 0 \tag{A.2}
\]

Multiply \([\alpha(s_1)+\beta(s_1)]^2 \) by both sides of (A.2) and substitute the \(\frac{\partial p(s_1, q)}{\partial q} = -\frac{1}{\epsilon_1} \frac{q}{p} \) into (A.1), we could rearrange the (A.2) as the following:

\[
1 - \alpha(s_1) - \beta(s_1) \geq \frac{-[\alpha(s_1)+\beta(s_1)]^2 \times 1 \frac{q}{p}}{k \times (\theta_1) \times (\theta_2) \times \left[\frac{\epsilon_1}{\epsilon_1-1} \right]} \tag{A.3}
\]

(A.3) could be further reduced to the following form:

\[
1 - \alpha(s_1) - \beta(s_1) \geq \frac{-[\alpha(s_1)+\beta(s_1)]^2 \times q(\epsilon_1-1)}{k \times (\theta_1) \times (\theta_2) \times \left[\frac{\epsilon_1}{\epsilon_1-1} \right]} \tag{A.4}
\]
We know that a monopolistic firm would never produce at the region where price elasticity of demand is inelastic in which 0<\(\varepsilon_1<1\).\(^{11}\)

Hence if 0<\(\varepsilon_1<1\),\[
\frac{q(\varepsilon_1-1)}{k(\theta_1)(\theta_2)(\varepsilon_1^2)p} < 0 , \text{ then } -[\alpha(s_1) + \beta(s_1)]^2 < 0
\]

\[
\frac{q(\varepsilon_1-1)}{k(\theta_1)(\theta_2)(\varepsilon_1^2)p} > 0, \text{ so it is impossible that } \alpha(s_1) + \beta(s_1) < 1
\]

In other words, if \(\varepsilon_1 = 1\), then \(\alpha(s_1) + \beta(s_1) = 1\). If \(\varepsilon_1 > 1\), then \(\alpha(s_1) + \beta(s_1) > 1\).

Nonetheless, if \(\varepsilon_1 = 1\), the first order condition implied by (A.1) would collapse and one could not find the optimal forcing quantity under the bilateral contracting choices for the Assembly firm. So the only case left is \(\varepsilon_1 > 1\) implying that \(\alpha(s_1) + \beta(s_1) > 1\).

Proof completes.

Appendix B.

Proof of Lemma 2:

We begin this proof by taking the second order condition of the profit function implied by (22) and let it smaller than 0. After plugging the forcing quantity into the second order condition, we then could obtain the following condition:

Step 1:

\(^{11}\) The reason of why a monopolist firm would never produce at the region where the price elasticity of demand is inelastic is as follows: Consider the following marginal revenue expression for a monopolist:

\[
MR(q) = \frac{\partial \theta(q)}{\partial q} = p'(q)q + p(q) = \frac{q(p)}{p'(p)} + p = \frac{p q'(p)}{p q'(p)} + p = \left[\frac{1}{q'(p)} \frac{q(p)}{p} + 1\right] = p(\frac{1}{q(p)} + 1). \text{ Since a monopolist would never produce at the level in which Marginal revenue is negative, so it must be the case that } p(\frac{1}{q(p)} + 1) \geq 0. \text{ This would lead to the following result: } e(p) \leq -1, \text{ so } |e(p)| \geq 1.\]
\[
\left\{ \frac{1}{\alpha(s_2) + \beta(s_2)} \left(q^* \right)^{\frac{1-2\alpha(s_2)-2\beta(s_2)}{\alpha(s_2) + \beta(s_2)}} \times \theta_3 \times \theta_4 + \frac{\lambda_1}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \times \left[\frac{\epsilon_1}{\epsilon_{1-1}} \right] \right\} + \left\{ \frac{\lambda_2}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \right\} < 0 \tag{B.1} \]

Since it is a must that \(\epsilon_2 > 1 \), then \(\frac{\epsilon_2}{\epsilon_{2-1}} > 0 \). So we have to ensure that

\[
\left\{ \frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2) + \beta(s_2)} \left(q^* \right)^{\frac{1-2\alpha(s_2)-2\beta(s_2)}{\alpha(s_2) + \beta(s_2)}} \times \theta_3 \times \theta_4 + \frac{\lambda_1}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \times \left[\frac{\epsilon_1}{\epsilon_{1-1}} \right] \right\} + \left\{ \frac{\lambda_2}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \right\} < 0 \tag{B.2} \]

Step 2. Now guess that if \(\alpha(s_2) + \beta(s_2) = 1 \), given that \(\alpha(s_1) + \beta(s_1) > 1 \)

Then,

\[
0 + \left\{ \frac{\lambda_1}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \times \left[\frac{\epsilon_1}{\epsilon_{1-1}} \right] \right\} + \left\{ \frac{\lambda_2}{\alpha(s_1) + \beta(s_1)} \left(q^* \right)^{\frac{1-2\alpha(s_1)-2\beta(s_1)}{\alpha(s_1) + \beta(s_1)}} \left[\theta_1 \right] \times \left[\theta_2 \right] \right\} < 0
\]

So (B.2) could be satisfied if the Marketing firm exhibits the constant return of scale.

Secondly, guess that if \(\alpha(s_2) + \beta(s_2) > 1 \),

The condition of (B.2) is satisfied as all the 3 terms in the bracket are negative.

Now guess that if \(\alpha(s_2) + \beta(s_2) < 1 \)

Then condition (B.2) could be satisfied if and only if
\[
\left(\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}\right)^2 (q^*)^2 + \lambda \left(1-\alpha(s_2)-\beta(s_2)\right) \left(\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}\right)^2 \times \theta_3 \times \theta_4 < \left(\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right)^2 (q^*) \times \left(\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right) \times \theta_1 \times \theta_2 \times \theta_3 \times \theta_4
\]

Thus,

\[
\left(\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}\right)^2 (q^*)^2 + \lambda \left(1-\alpha(s_2)-\beta(s_2)\right) \left(\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}\right)^2 \times \theta_3 \times \theta_4 < -\left(\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right)^2 (q^*) \times \left(\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right) \times \theta_1 \times \theta_2 \times \theta_3 \times \theta_4
\]

Rearrange (B.4), we could obtain the following condition

\[
0 < (q^*)^2 \left(\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}\right)^2 \times \left[\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right]^2 \times \lambda \left(1-\alpha(s_2)-\beta(s_2)\right) \times \left[\frac{1-\alpha(s_1)-\beta(s_1)}{\alpha(s_1)+\beta(s_1)}\right] \times \theta_3 \times \theta_4
\]

Since

\[
\left[-\lambda \times [\theta_1] \times [\theta_2] \times \left[\frac{\epsilon_1}{\epsilon_1-1}\right] - \lambda \times [\theta_1] \times [\theta_2]\right] < 0,
\]

then it must be the case that

\[
1 - \alpha(s_2) - \beta(s_2) < 0\]

which contradicts with the statement \(\alpha(s_2) + \beta(s_2) < 1\).

So the decreasing return of scale is impossible.

Proof completes

Appendix C

Take the derivative of (26) with respect to \(q\) and let it equal to 0, we could obtain the first order condition as the following:

\[
p_f(q) + \frac{\partial p_f(q)}{\partial q} = MC(s_1, q) + MC(s_2, q)
\]

(C.1)
Plug (9) and (21) into the (C.1) as well as factor out the $p_m(q)$ on the right side of (C.1), I could obtain the following condition:

$$p_f(q) = \left(\frac{\varepsilon_2}{\varepsilon_2-1}\right)\left\{\frac{1}{\alpha(s_1)+\beta(s_1)} q^\frac{1-\sigma(s_2)-\beta(s_2)}{\alpha(s_1)+\beta(s_1)} \times \theta_1 \times \theta_2 \right\} \times \theta_3 \times \theta_4 \right\}$$

(C.2)

Thus,

$$\frac{1}{(A)^{\varepsilon_2}} q^{\frac{1}{\varepsilon_2-1}} = \left(\frac{\varepsilon_2}{\varepsilon_2-1}\right)\left\{\frac{1}{\alpha(s_1)+\beta(s_1)} q^\frac{1-\sigma(s_2)-\beta(s_2)}{\alpha(s_1)+\beta(s_1)} \times \theta_1 \times \theta_2 \right\} \times \theta_3 \times \theta_4 \right\}$$

(C.3)

Plug the forcing quantity q^* into (C.3), we know that the forcing quantity must satisfy the following:

$$\frac{1}{(A)^{\varepsilon_2}}(q^*)^{-\frac{1}{\varepsilon_2-1}} = \left(\frac{\varepsilon_2}{\varepsilon_2-1}\right)\left\{\frac{1}{\alpha(s_1)+\beta(s_1)} (q^*)^\frac{1-\sigma(s_2)-\beta(s_2)}{\alpha(s_1)+\beta(s_1)} \times \theta_1 \times \theta_2 \right\} \times \theta_3 \times \theta_4 \right\}$$

(C.4)

Proof completes.

Appendix D

Step 1.

We begin this proof by firstly setting up the following inequality which implies the dominance of capability effect of the downstream Marketing firm over the counterpart effect of the upstream Assembly firm:
\[
\left\{ \frac{1}{\alpha(s_1)+\beta(s_2)} \times (q^*)^{\frac{1-\alpha(s_2)-\beta(s_2)}{\alpha(s_2)+\beta(s_2)}} \times [\theta_1] \times [\theta_2] \times \left\{ \left[\frac{\varepsilon_1+\lambda_1-1}{\varepsilon_2-1} \right] \times \frac{1}{\varepsilon_2-1} - \frac{\lambda_2}{(e_1-1)(e_2-1)} \right\} \right\} > 0
\]

(D.1)

Capability effect of downstream marketing firm
\[
\left\{ \frac{\lambda_2}{(e_2-1)} + 1 \right\} \times \frac{1}{\alpha(s_2)+\beta(s_2)} \times [\theta_1] \times [\theta_2]
\]

CAPABILITY EFFECT OF UPSTREAM ASSEMBLY FIRM

(D.2)

Normalizing \(q^* = 1 \) and (D.1) could be further reduced to the following form:

\[
\left\{ \left[\frac{\varepsilon_1+\lambda_1-1}{\varepsilon_2-1} \right] \times \frac{1}{\varepsilon_2-1} - \frac{\lambda_2}{(e_1-1)(e_2-1)} \right\} > [\frac{\lambda_1}{(e_1-1)} + 1]
\]

(D.2)

(D.2) could be rewritten as the following:

\[
\frac{\varepsilon_1+\lambda_1-1-\lambda_2}{\varepsilon_2-1} > \lambda_1 + \varepsilon_1 - 1 \quad (D.3)
\]

(D.3) could be rearranged as the following:

\[
2\lambda_1 (\varepsilon_2 - 1) > (\varepsilon_1 - 1) (\varepsilon_2 - 2) \quad (D.4)
\]

Substitute \(\lambda_1 = 1 - \lambda_2 \) into (D.4), we could obtain the following:

\[
2(1-\lambda_2)(\varepsilon_2 - 1) > (\varepsilon_1 - 1) (\varepsilon_2 - 2) \quad (D.5)
\]

Expand the (D.5) by both sides and rearrange it, (D.5) becomes:

\[
2(\varepsilon_2 - \varepsilon_1) + 2\lambda_2 (1 - \varepsilon_2) > \varepsilon_2 (1 - \varepsilon_1) \quad (D.6)
\]

Then, from (D.6) we know that

\[
\frac{2[\varepsilon_2-\varepsilon_1+\lambda_2-\lambda_2\varepsilon_2]}{\varepsilon_2} > (1 - \varepsilon_1) \quad (D.7)
\]

As \((1 - \varepsilon_1) < 0 \)

So we then have 2 cases:
\[
\begin{cases}
\frac{2[\varepsilon_2 - \varepsilon_1 + \lambda_2 - \lambda_2 \varepsilon_2]}{\varepsilon_2} > 0 \\
\frac{2[\varepsilon_2 - \varepsilon_1 + \lambda_2 - \lambda_2 \varepsilon_2]}{\varepsilon_2} < 0
\end{cases}
\]
\text{(D.8)}

For the first part of (D.8), it could be seen that we would obtain the following

\[
\varepsilon_2 - \varepsilon_1 + \lambda_2 - \lambda_2 \varepsilon_2 > 0
\]

Which is \(\lambda_2 > \frac{\varepsilon_1 - \varepsilon_2}{1 - \varepsilon_2} \). As \(1 > \lambda_2 \), this implies that \(\varepsilon_1 < 1 \) which is impossible. So we could ignore the first part of (D.8).

For the second part of (D.8), we obtain that \(\lambda_2 < \frac{\varepsilon_1 - \varepsilon_2}{1 - \varepsilon_2} \) as \(0 < \lambda_2 \), so \(\frac{\varepsilon_1 - \varepsilon_2}{1 - \varepsilon_2} > 0 \), then it could be obtained that \(\varepsilon_1 - \varepsilon_2 < 0 \) which implies \(\varepsilon_1 < \varepsilon_2 \)

Step 2

Now let us proceed to the proof of the second condition for the case (1). If the cost effects of the downstream Marketing firm dominate, then the total cost of the marketing firm must be strictly lower than that of the upstream Assembly firm. Then the following inequality must hold:

\[
\begin{align*}
\left\{\left(\frac{1}{(q^*)^{\alpha(s_2)+\beta(s_2)}} \times \theta_3 \times \theta_4 \left[\frac{1}{\alpha(s_2) + \beta(s_2)} - 1\right]\right) + \frac{F(s_2)}{q^*}\right\} &< \\
\left\{\left[\left(q^*\right)^{\alpha(s_2)+\beta(s_2)} \times \theta_3 \times \theta_4 \right] + \frac{F(s_2)}{q^*}\right\}
\end{align*}
\]

\text{(D.9)}

Now there are two cases to consider here. Case 1 is when \(\alpha(s_2) + \beta(s_2) = 1 \). Case 2 is when \(\alpha(s_2) + \beta(s_2) > 1 \).

Case 1. \(\alpha(s_2) + \beta(s_2) = 1 \)
If the marketing firm exhibits the constant return of scale, then (D.9) reduces to the following form after normalizing the forcing quantity to 1:

\[F(s_2) < [\theta_1] \times [\theta_2] + F(s_1) \]

(D.10)

From (D.10), we know that \(F(s_2) - F(s_1) < [\theta_1] \times [\theta_2] \)

Which is

\[F(s_2) - F(s_1) < w(s_1) \frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \times (\frac{\alpha(s_1)}{\beta(s_1) + \beta(s_1)} + (\frac{\alpha(s_1)}{\beta(s_1)}) \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \]

(D.11)

As \(r=1 \), (D.11) could be rearranged as the following:

\[F(s_2) - F(s_1) < w(s_1) \frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \times (\frac{\alpha(s_1)}{\beta(s_1) + \beta(s_1)} + (\frac{\alpha(s_1)}{\beta(s_1)}) \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \]

(D.12)

Which is

\[F(s_2) - F(s_1) < w(s_1) \frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \times (\frac{\alpha(s_1)}{\beta(s_1) + \beta(s_1)} + (\frac{\alpha(s_1)}{\beta(s_1)}) \times (\frac{\alpha(s_1) - \alpha(s_2)}{\beta(s_1)}) \]

(D.13)

Take the log by both sides for (D.13), then we could obtain the following:

\[\log[F(s_2) - F(s_1)] < \frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \log w(s_1) + \log[\alpha(s_1) + \beta(s_1)] - \log[\beta(s_1)] \times (\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)}) \log[\beta(s_1)] - \]

(D.14)

(D.14) could be rewritten as the following:

\[\log[F(s_2) - F(s_1)] < \frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)} \log \left(\frac{w(s_1)\beta(s_1)}{\alpha(s_1)} \right) + \log[\alpha(s_1) + \beta(s_1)] \times (\frac{\alpha(s_1)}{\beta(s_1)}) \log[\beta(s_1)] \]

(D.15)

(D.15) could be further reduced to:

\[\log[F(s_2) - F(s_1)] < \log \left(\frac{w(s_1)\beta(s_1)}{\alpha(s_1)} \right) \times (\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)}) \times (\frac{\alpha(s_1)}{\beta(s_1)}) \]

(D.16)

which is

\[F(s_2) - F(s_1) < \left[\frac{w(s_1)\beta(s_1)}{\alpha(s_1)} \right] \times (\frac{\alpha(s_1)}{\alpha(s_1) + \beta(s_1)}) \times (\frac{\alpha(s_1)}{\beta(s_1)}) \]

(D.17)
Plug \(w(s_1) = \frac{\alpha(s_1)}{\beta(s_1)[L(s_{1,1})]} \) into (D.17),

we then obtain the inequality for the average labour productivity condition:

\[
\frac{1}{L(s_{1,1})} < \left\{ \frac{\alpha(s_1) + \beta(s_1)}{\beta(s_1)[F(s_2) - F(s_1)]} \right\} \quad \text{(D.18)}
\]

Case 2. \(\alpha(s_2) + \beta(s_2) > 1 \)

If \(\alpha(s_2) + \beta(s_2) > 1 \), then in order to make sure (D.9) holds, it must be the case that

\[
[\theta_3] \times [\theta_4] \times \left[\frac{1}{\alpha(s_2) + \beta(s_2)} - 1 \right] < [\theta_1] \times [\theta_2] + F(s_1) - F(s_2) \quad \text{(D.19)}
\]

So

\[
\frac{1}{\alpha(s_2) + \beta(s_2)} - 1 < \frac{[\theta_1] \times [\theta_2] + F(s_1) - F(s_2)}{[\theta_3] \times [\theta_4]} \quad \text{(D.20)}
\]

As \(0 < \alpha(s_2) < 1, 0 < \beta(s_2) < 1 \), this implies that

\[
\left[\frac{1}{\alpha(s_2) + \beta(s_2)} - 1 \right] > -\frac{1}{2}
\]

This then leads to the following inequality:

\[
\frac{[\theta_1] \times [\theta_2] + F(s_1) - F(s_2)}{[\theta_3] \times [\theta_4]} > -\frac{1}{2} \quad \text{(D.21)}
\]

(D.21) could be rearranged as the following:

\[
2[F(s_2) - F(s_1)] < [\theta_3] \times [\theta_4] + 2 \times [\theta_1] \times [\theta_2] \quad \text{(D.22)}
\]

Take log by both sides for (D.22)

\[
\log(2) + \log[F(s_2) - F(s_1)] < \log[[\theta_3] \times [\theta_4] + 2 \times [\theta_1] \times [\theta_2]] \quad \text{(D.23)}
\]

which is

\[
\log[[\theta_3] \times [\theta_4] + 2 \times [\theta_1] \times [\theta_2]] > \log[2[F(s_2) - F(s_1)]] \quad \text{(D.24)}
\]

We know that according to assumption 2, \(F(s_2) - F(s_1) > \frac{1}{2} \), then it must be the case that

\[
\log[2[F(s_2) - F(s_1)]] > 0
\]

This implies that

\[
\log[[\theta_3] \times [\theta_4] + 2 \times [\theta_1] \times [\theta_2]] > 0 \quad \text{(D.25)}
\]
From (25), we know that $[[\theta_3] \times [\theta_4] + 2 \times [\theta_1] \times [\theta_2]] > 1$ \hspace{1cm} (D.26)

(D.26) could be rewritten as the following, when $q^* = 1, r=1$:

$$w(s_2)\frac{a(s_2)}{a(s_2)+\beta(s_2)} \times \left\{ \frac{\alpha(s_2)}{\beta(s_2)} \frac{-\alpha(s_2)}{\beta(s_2)} \right\} > 1 - 2 \left(w(s_1) \frac{a(s_1)}{a(s_1)+\beta(s_1)} \times \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \frac{-\alpha(s_1)}{\beta(s_1)} \right\} \right) \right) \right)$$

(D.27)

Take log by both sides for (D.27):

$$-\frac{\alpha(s_2)}{\alpha(s_2)+\beta(s_2)} \log w(s_2) - \frac{\alpha(s_2)}{\alpha(s_2)+\beta(s_2)} \log (\frac{\alpha(s_2)}{\beta(s_2)}) + \log (\frac{\alpha(s_2)+\beta(s_2)}{\beta(s_2)}) > \log \left(1 - 2 \left(w(s_1) \frac{a(s_1)}{a(s_1)+\beta(s_1)} \times \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \frac{-\alpha(s_1)}{\beta(s_1)} \right\} \right) \right) \right)$$

(D.28)

(D.28) could be further reduced to the following:

$$-\frac{\alpha(s_2)}{\alpha(s_2)+\beta(s_2)} \log w(s_2) - \log \left(\frac{\alpha(s_2)+\beta(s_2)}{\beta(s_2)} \right) > \log \left(1 - 2 \left(w(s_1) \frac{a(s_1)}{a(s_1)+\beta(s_1)} \times \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \frac{-\alpha(s_1)}{\beta(s_1)} \right\} \right) \right) \right)$$

(D.29)

Which is the following:

$$\log \left[\frac{w(s_2)\beta(s_2)}{\alpha(s_2)} \frac{a(s_2)}{\alpha(s_2)+\beta(s_2)} \right] + \log \left(\frac{\alpha(s_2)+\beta(s_2)}{\beta(s_2)} \right) > \log \left(1 - 2 \left(w(s_1) \frac{a(s_1)}{a(s_1)+\beta(s_1)} \times \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \frac{-\alpha(s_1)}{\beta(s_1)} \right\} \right) \right) \right)$$

(D.30)

(D.30) could be rewritten as the following:

$$\left\{ \frac{w(s_2)\beta(s_2)}{\alpha(s_2)} \frac{a(s_2)}{\alpha(s_2)+\beta(s_2)} \times \left(\frac{\alpha(s_2)+\beta(s_2)}{\beta(s_2)} \right) \right\} > 1 - 2 \left(w(s_1) \frac{a(s_1)}{a(s_1)+\beta(s_1)} \times \left\{ \frac{\alpha(s_1)}{\beta(s_1)} \frac{-\alpha(s_1)}{\beta(s_1)} \right\} \right) \right)$$

(D.31)

(D.31) could be rearranged as follows:
Proof Completes

\[
\begin{align*}
\left[\frac{w(s_2)\beta(s_2)}{a(s_2)}\right]^\alpha(s_2) &> \frac{\beta(s_2)}{\beta(s_2)+\alpha(s_2)} - 2 \left[\frac{\beta(s_2)}{\beta(s_2)+\alpha(s_2)}\right] \left[w(s_1)\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}\right] \times \left(\frac{\alpha(s_1)}{\beta(s_1)}\right)^{-\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}} \\
&\left\{a(s_2)\beta(s_2)\right\}^{-1}
\end{align*}
\]

(D.32)

This is to say:

\[
\begin{align*}
\left[\frac{w(s_2)\beta(s_2)}{a(s_2)}\right]^\alpha(s_2) &> \frac{\beta(s_2)}{\beta(s_2)+\alpha(s_2)} - 2 \left[\frac{\beta(s_2)}{\beta(s_2)+\alpha(s_2)}\right] \left[w(s_1)\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}\right] \times \left(\frac{\alpha(s_1)}{\beta(s_1)}\right)^{-\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}} \\
&\left\{a(s_2)\beta(s_2)\right\}^{-1}
\end{align*}
\]

(D.33)

Whence

\[
\begin{align*}
\left[\frac{w(s_2)\beta(s_2)}{a(s_2)}\right]^\alpha(s_2) &+ \left\{\frac{2\beta(s_2)\alpha(s_2)}{\beta(s_1)\beta(s_2)+\alpha(s_2)}\right\} \times \left[w(s_1)\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}\right] \times \left(\frac{\alpha(s_1)}{\beta(s_1)}\right)^{-\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}} \\
&\left\{a(s_2)\beta(s_2)\right\}^{-1}
\end{align*}
\]

(D.34)

From the expression for the conditional input demand for labour at both Assembly stage and Marketing stage, the wage level at each stage corresponds to

\[
w(s_1) = \frac{\alpha(s_1)}{\beta(s_1)\beta(s_2)+\alpha(s_2)} w(s_2) = \frac{\alpha(s_2)}{\beta(s_2)\beta(s_1)+\alpha(s_1)}
\]

(D.35)

Plug (D.35) into (D.34), we obtain the following:

\[
\begin{align*}
\frac{2\beta(s_2)\alpha(s_2)}{\beta(s_1)\beta(s_2)+\alpha(s_2)} \times \left[\frac{1}{L(s_1)}\right] \left[w(s_1)\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}\right] \times \left(\frac{\alpha(s_1)}{\beta(s_1)}\right)^{-\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}} \\
\left\{a(s_2)\beta(s_2)\right\}^{-1}
\end{align*}
\]

(D.36)

So (D.36) could be arranged as follows:

\[
\begin{align*}
\frac{1}{L(s_2)} &> \left\{\frac{\beta(s_2)}{\beta(s_2)+\alpha(s_2)} - \frac{2\beta(s_2)\alpha(s_2)}{\beta(s_1)\beta(s_2)+\alpha(s_2)}\right\} \times \left[\frac{1}{L(s_1)}\right] \left[w(s_1)\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}\right] \times \left(\frac{\alpha(s_1)}{\beta(s_1)}\right)^{-\frac{\alpha(s_1)}{\beta(s_1)+\alpha(s_1)}} \\
\left\{a(s_2)\beta(s_2)\right\}^{-1}
\end{align*}
\]

(D.37)

Proof Completes