The Globalization and Sources of Regional Income Growth Disparity in the Emerging Countries

Jagannath MALLICK

*Indira Gandhi National Open University (IGNOU), New Delhi

mallickjagannath@gmail.com

Atsushi FUKUMI

University of Hyogo, Japan

fukumi@econ.u-hyogo.ac.jp

Abstract:

The paper contributes to the debate on globalization and regional disparities in economic growth in India and the People’s Republic of China (PRC) as the two largest emerging countries. The study is new in decomposing regional per capita income growth based on Solow’s growth accounting approach and also in estimating the direct and indirect effects of globalization on regional growth. The paper uses the dynamic panel Spatial Autoregressive Model (SAR) and Spatial Durbin Model (SDM) for the empirical analysis. The analysis draws the following five important results. First, growth accounting approach suggests that the source of high regional inequality is due to disparities in total factor productivity growth in the PRC, and this and capital intensity are the regional imbalances sources in India. Second, the globalization represented by FDI is found to be significant in regional per capita income growth in both the countries, while its neighborhood effect is positive in the PRC only. Third, the income growth in neighboring regions influences that of a given region positively in both countries. Fourth, the brain drain effect of the human capital is found in both the countries due to the migration of educated people. Fifth, as the indirect effects of globalization the FDI affects the domestic capital formation positively in the regions in India and human capital in the PRC. The study suggests that the policy-makers should consider the role of globalization and neighborhood relationship in addition to human capital and physical investment for designing policies to reduce income disparities in these two countries.

Keywords: Globalization, Regional Income Growth, Dynamic spatial panel, Emerging economies

JEL Classifications: F02; F06, F43; R11; R12; L1

This work was done at the University of Hyogo, Japan during the International Research Fellowship of The Japan Society for the Promotion of Science (JSPS) of the first author. The initial draft of the work was presented at Leibniz Institute of Agricultural Development in Transitional Economies (IAMO) Forum 2017, Halle, Germany. The revised draft was also presented at the XIX annual April International conference 2018 at National Research University, Higher School of Economics, Moscow.
The Globalization and Sources of Regional Income Growth Disparity in the Emerging Countries

1. Introduction

The persistence of regional imbalances in economic growth and development in the context of the emerging countries like People’s Republic of China (PRC) and India is a hot debate (Li and Wei, 2010; Mallick, 2014, 2013b). The income inequalities at the regional and individual level are identified as one of the factors of the middle-income trap (MIT) of an economy (Aiyar et al. 2013; Egawa, 2013; Islam 2015). The growth of an economy is driven by the growth of input and productivity. The input-driven growth is achieved through the increase in factors of production. The productivity-driven growth is the growth in output that cannot be explained by the growth in total inputs. It is normally credited to the improvement in knowledge, the management of human capital, organizational structure, skills attainment and efficient use of factors of production.

The globalization and economic integration may affect the emerging countries in various ways. They have facilitated the transfer of technology and substantially increased international trade and foreign direct investment (FDI) which contributed to the production efficiencies. Especially, the FDI inflows bring advanced technology and modern management skills to host economies, which enhances productivity directly and indirectly affecting through the human capital, infrastructure, domestic firms, agglomeration effects, spillover effects across firms and regions etc (Ramirez, 2006; Bode et al, 2009; Cheung and Lin, 2002). However, the distribution of FDI is not uniform across the regions in these two largest emerging countries due to a variety of reasons. The FDI may also indirectly affect a region through its crowding-in or out effect relation with the domestic capital formation; its neighborhood or spatial effect at the regional level in an economy. Certain studies establish that the globalisation increases income inequalities within the countries, especially in the emerging countries through the demand for skilled labor (Hale et al. 2007) and the inter-regional competition (Candelaria et al. 2013; Ezcurra and Rodríguez-Pose, 2013; Hale et al. 2007; Wan and Chen, 2007; Zhang and Zhang, 2003).

The empirical questions to analyse are – what are the sources of the regional income growth disparities; how the neighborhood relationship and globalization affect the regional growth. There is a dearth of studies dealing with these issues in the context of
India and the PRC. These countries have been broadly following similar patterns of growth and inter-regional disparity, after the initiation of substantial economic reform measures. Further, the relevance of this issue in these two countries is largely due to (i) these countries rising international trade and FDI inflows; (ii) advancement of technologies that have reduced production cost; (iii) the changing federalism structure from co-operative to competitive; and (iv) persistence of inter-regional income inequalities within the country. This is important to reduce the regional disparity to avoid the MIT. Therefore, it becomes pertinent to make a detailed and comparative analysis on these issues by considering these two countries.

However, the existing studies are not without controversies, they vary widely depending on the methodology and data sources used and the measurement of variables. They do not explicitly discuss the sources of the regional disparities and both the direct and indirect impact of globalization as mentioned above. The explicit analysis of the sources of economic growth will identify as to whether the variation is due to the factor inputs or the total factor productivity growth (TFPG). Most importantly, the factors such as inter-regional trade, technology diffusion, knowledge spillover, labor migration and capital movement, etc. that make the regions geographically interdependent in the countries like India and the PRC. The economic growth of the neighboring regions may affect the given region. The spatial effects, particularly spatial autocorrelation, and spatial heterogeneity, must be taken into account when analyzing economic growth at the regional level. Hence, it is important to consider the spatial distributions and neighboring interactions to study inter-regional variations. In the context of the present issues, both economic growth and their various factors including the degree of globalization may have neighborhood effects. The spatial effect of human capital will indicate the brain drain effects. Unfortunately, there is no study that addresses this issue by taking into account the regional neighborhoods effects of both dependent and independent variables. There are various challenges doing research on regional studies (Stimson, 2016), particularly the comparative data sets in the context of the developing countries (Mallick 2013 a). Hence, the present study takes into account all the lacunas to deal with these research issues, though it is a challenging task.

The study has wider policy implications for the emerging and MICs in general, and India and the PRC in particular. Therefore, the present study attempts to strengthen
the existing literature by making following contributions by using comparable data sets across the regions in India and the PRC. First, based on the Solow’s growth accounting approach, the per capita income growth is decomposed into the employment rate, total factor productivity growth (TFPG), and contribution of human capital and capital intensity, which identifies the sources of regional growth imbalances. Second, the study empirically evaluates the effect of globalization on the regional income growth by taking account of the spatial interactions. Third, the study establishes as to whether the regional per capita income is converging. Finally, the study provides policy implications to reduce regional income disparities, and to achieve higher regional and national economic growth.

The remainder of the study is organized as follows. The theoretical and empirical approaches and data are described in section 2. The preliminary analysis including the sources of regional income growth is presented in section 3. The empirical analysis is presented in section 4. Section 5 offers conclusions and policy implications.

2. Empirical Approaches and Data

This section briefly presents the theoretical intuition behind the sources of regional income growth, the methodology for the empirical analysis of impact of globalization on the regional income growth and data.

2.1. The sources of Economic growth

The standard Cobb-Douglas production function defines the level of output as a function of total factor productivity and capital and labor as the factors of production. The Cobb-Douglas production function under the constant returns to scale is written as:

\[Y_{it} = A_{it}K_{it}^{1-\alpha}(HK_{it}L_{it})^{\alpha} \text{ where } 0<\alpha<1 \]

(1)

Here Y, A, K, and L represent the level of output and total factor productivity(TFP), physical capital stock, labor force, respectively. HK is a measure of the human capital stock that is embodied in the labor force. \(\alpha \) and \(1-\alpha \) denote the elasticity of labor and physical capital stock. The component ‘A’ captures the TFP effect on output growth.

This study captures the role of globalization through the FDI inflows. As noted by Ramirez (2006), FDI contributes to the economic growth through the indirect channels rather than the direct input to production or as the part of capital formation.\(^1\) FDI affects

\(^1\) Some studies such as Cypher and Dietz (1997) and Plasschaert (1994) noted that FDI flows leads to a net drain on the country’s scarce resources rather than increasing the investable
the economic growth through the technological change and efficiency change, and productivity spillover effects across the regions and firms etc (Ramirez, 2006; Bode et al, 2009; Cheung and Lin, 2002). Hence, here it is assumed that the effect of FDI on growth operates through variable A, and the effect of FDI on ‘A’ also depends on the human capital.

Taking the natural logarithm of both sides of equation (1)

\[\ln(Y_{it}) = \ln(A_{it}) + (\alpha) \ln(L_{it}) + (\alpha) \ln(HK_{it}) + (1 - \alpha) \ln(K_{it}) \]

(2)

By deducting \(\ln(Y_{it-1}) \) from both sides of equation (2), it can be rewritten as below;

\[\ln \left(\frac{Y_{it}}{Y_{it-1}} \right) = \ln \left(\frac{A_{it}}{A_{it-1}} \right) + (\alpha) \ln \left(\frac{L_{it}}{L_{it-1}} \right) + (\alpha) \ln \left(\frac{HK_{it}}{HK_{it-1}} \right) + (1 - \alpha) \ln \left(\frac{K_{it}}{K_{it-1}} \right) \]

(3)

The left side of the equation (3) is the growth rate of income. The first term of the right side of the equation the total factor productivity growth (TFPG), which is also known as the Solow’s residual. The second, third and fourth terms in the right-hand side of the equation are called as contribution of labor, human capital and capital respectively. The equation (3) can be rewritten to represent the decomposition of the labor productivity growth (LPG) into the TFPG, contribution of human capital and capital intensity.²

As FDI can contribute to the economic growth indirectly through productivity, the impact of globalization represented by FDI inflows on the per capita income growth across the regions in India and the PRC can be evaluated by the following specification.

\[GPY_{it} = f(FDI_{it}, INV_{it}, HK_{it}) \]

(4)

Where GPY is the growth of per capita income, INV is the physical investment and HK is the human capital. The physical investment and human capital are used as the control variables in the empirical analysis, which have been emphasized in Barro and Sala-i-Martin (1995), Islam (1995), Mankiw et al., (1992), Solow (1956), etc.

resources of the host country. They generate substantial reverse flows in the form of remittances of profits and dividends to the parent companies, and through the intra-firm transfer pricing. Hence, the net contribution of FDI to private capital formation is: (gross FDI inflows) – (the repatriation of profits and dividends to the parent companies). Ramirez (2006) also noted that the net contribution of FDI to capital formation in Chile is far lower than the gross FDI inflows, and even negative for some years.

² \[Y_{it}/L_{it} = A_{it}K_{it}^{1-\alpha}(HK_{it})^\alpha(L_{it})^{\alpha-1} = A_{it}(K_{it}/L_{it})^{1-\alpha}(HK_{it})^\alpha \]

where \(K_{it}/L_{it} \) is the capital intensity and \(Y_{it}/L_{it} \) is the labour productivity. Similarly by taking natural logarithm, the equation becomes; \(\ln LP_{it} = \ln A_{it} + (1 - \alpha) \ln(K_{it}/L_{it}) + \alpha \ln HK_{it} \). Now, deducting \(\ln LP_{it-1} \) from the above equation gives the LPG as the sum of TFPG, contributions due to capital intensity and human capital.
The physical capital formation is used very often as the input of economic growth in the empirical studies (Mallick, 2013a, 2014; Rao et al, 1999; Zhang 2002; Biggeri 2003; Zhang and Zhang 2003). Whereas, the impact of FDI on economic growth is expected to be more than the domestic physical investment, especially in the developing countries (Graham and Krugman, 1991). A foreign firm enjoys lower costs, and higher productivity and efficiency than its domestic counterparts in the hosting country, which is the result from the combination of advanced management skills and modern technologies. These are transferred to developing countries, mainly through FDI inflows (Baldwin and Dhaliwal 2001; Baldwin and Gu, 2005; Blomstorm and Kokko 1998; Criscuolo, 2005).

Human capital affects economic growth by improving productivity (Schultz 1975; Welch 1970; Romer 1990; Benhabib et al.1992; Lucas 1988; Kremer and Thompson 1993). Productivity growth has a significant relationship with the quality of human capital, through the technological competence of the workforce. Human capital also generates positive externalities, the employee having education may affect to the employee with the lower education level (Lucas, 1988; Mallick, 2017b). The international migration literature also high light the term brain drain effect that the highly educated or skilled worker migrate from the developing countries to the developed countries which is driven by higher salary and better exposures (Dodani and LaPorte, 2005, p. 488). Similarly, there is high likelihood of the highly skilled worker in moving from the less developed regions to the higher developed regions within the countries in India and the PRC as there is no much constraint like the international migrations. The sign of the coefficients of spatial effect indicate whether there is brain drain effect across the regions.

2.2. Empirical Methodology

The empirical analysis on the impact of globalization on the economic growth through the channels of boosting productivity includes 20 major States in India and 30 provinces in the PRC from 1993–94 to 2010–11. A panel data equation can be written as follows.

\[Y_{it} = \alpha + \beta \ast EX_{it} + \mu_i + \epsilon_{it} \]

(5)

Where, \(i = 1, 2, ..n \) (n=20 for India and n=30 for the PRC) and \(t = 1994-95, 1995-96, ,., 2010 – 11 \). \(Y_{it} \) is the per capita income growth and \(EX_{it} \) is the vector of explanatory variables. The error term is a composite residual consisting of time invariant individual-specific components \(\mu_i \) and a disturbance term \(\epsilon_{it} \) that satisfy the Classical Linear Regression model assumptions. Further, FDI and investment may be endogenously
related to the income growth, and the lag years of income growth may be one of the regressors as discussed in the growth convergence literature. These issues can be tackled through a dynamic panel Generalized Method of Moments (GMM) estimators.\(^3\) The dynamic representation of the panel equation (1) is as follow:

\[
Y_{it} = \alpha Y_{it-1} + \delta X_{it} + \lambda Z_{it} + \mu_i + \epsilon_{it}
\]

(6)

Where \(Y_{it-1}\) is a one year lag of income growth, \(X_{it}\) is the vector of strictly exogenous variables and \(Z_{it}\) is the vector of predetermined and endogenous variables. Where, \(\alpha, \delta\) and \(\lambda\) are the parameters. There are two approaches to estimate the dynamic panel data; difference GMM and system GMM. The lagged value of the explanatory variables is used as the instruments in the difference GMM. This approach has statistical problems, when the first difference of the regressors are persistent, that makes the lagged levels of \(Z\) and \(Y\) as weak instruments. The use of weak instruments increases the variance of the coefficient, which becomes bias in small samples. Arellano and Bover (1995) and Blundell and Bond (1997) develop a system of regressions indifferences and levels to reduce the potential bias and inaccuracy associated in the difference GMM. The lagged levels of the explanatory variables are the instruments in the regression indifferences, and the lagged differences of explanatory variables are the instruments in the regression in levels in the system GMM.

However, the panel data do not capture the spatial interaction or correlation among the regions. The sign of spatial correlation is issue specific. For instance, in the context of economic growth, the spatial correlation is expected to have a positive effect. However, in some cases, for instance the location of investment, the correlation could be negative or positive. The location of investment in one region may affect positively due to the effects of agglomeration or spill-over. This relation may be negative on the other hand, because the relatively strong business environment of a region, reduces the location of investment in its neighboring regions. These kind of spatial interaction effects can be controlled through spatial regression models (Belotti et al 2016). Spatial autoregressive (SAR) model and Spatial Durbin model (SDM) are commonly used in regional economic development. The SDM model takes account the spatial effect of both dependent and independent variables (Belotti et al 2016). The SAR model is the spatial case of the SDM model, which takes into account the spatial effect of the dependent variable only (Ansellin and Bera, \(^3\) This methodology also takes into account the non-observable individual specific effects.
The panel representation of the SAR or spatial lag model can be specified as follows:

\[Y_{it} = \alpha + \rho \sum_{j=1}^{n} w_{ij} Y_{jt} + \beta X_{it} + \mu_{i} + \epsilon_{it} \]

(7)

Where, \(\sum_{j=1}^{n} w_{ij} \) is the classical weight matrix\(^4\), which is a row-standardized matrix of spatial weights describing the structure and intensity of spatial effects. \(\rho \) is the spatial autoregressive coefficient or the coefficient of the spatially lagged dependent variable. This indicates the magnitude to which the income growth in one region is determined by the behaviour of its neighborhood. The sign of the value of the \(\rho \) parameter indicates the sign of the spatial effects. The error term \(\epsilon_{it} \) is again assumed normally distributed and independent of all the regressors, under the assumption that all spatial dependence effects are captured by the spatially lagged variable. Corresponding to the dynamic panel GMM estimator in equation (2), the dynamic SAR Model can be specified as follow (Baltagi et al. 2014).

\[Y_{it} = \alpha Y_{it-1} + \rho \sum_{j=1}^{n} w_{ij} Y_{jt} + \delta X_{it} + \lambda Z_{it} + \mu_{i} + \epsilon_{it} \]

(8)

This model can also be estimated by the difference GMM and system-GMM approaches like the non-spatial dynamic panel model. The study applies system estimation in the spatial data framework due to its advantage over the difference GMM as discussed before. The study applies both SAR and SDM specifications of dynamic panel GMM system approach.

2.3. Data

The study uses annual data in the Indian states and the PRC’s provinces from the year 1993 to 2010. The gross state domestic product (GSDP) at the base year 2004–05 in India is taken from Central Statistical Organization (CSO). The study uses data on capital stock, labor person and labor income share to decompose per capita income growth into the contributions due to the growth of the employment rate, capital intensity and TFPG. There are limitations of the availability of state-level investment data in India as discussed in Mallick (2012; 2013b; 2013 a; 2014). Also, there are no ready-made data on the regional employment. Hence, this paper follows the approaches as adapted in Mallick (2017a) for the data on regional capital stock and labor in India.

\(^4\)In this paper, the weight matrix is based on the classical binary connectivity matrix which assume the values of 1 if the two regions share a common border and zero otherwise.
The provincial investment data in the PRC are sourced from National Bureau of Statistics of China (NBSC), which are converted into constant prices by using regional income implicit deflators. The perpetual Inventory Method (PIM) is adapted to estimate capital stock by using initial capital stock in 1993 from Li (2003). The regional labor data are also sourced from NBSC.

The estimates of labor, income and capital stocks at the regional level in both countries are controlled by the national aggregate data from the Asian Productivity Organization (APO 2016) for the international comparison. The labor income share data at the regional level is a challenging task. Hence, the study uses the national labor income share from APO (2016) for both countries.

The data on other variables used in the empirical analysis, are mainly sourced from NBSC (for PRC), and CSO, annual reports of University Grant Commission and Secretariat of Industrial Assistance (SIA) (for India). The detailed variables, measurement and data sources of the variables included in the empirical analysis are described in Table A1 in appendices.

3. The Preliminary Analysis

The preliminary analysis starts with the examination of national and regional income structure in the three broad activities namely primary, secondary and tertiary sector. This section also presents Solow’s growth decomposition results.

3.1. Regional Disparity in Income

The income structure in the three broad sectors is presented in Figure 1 for India. The income in Indian economy was predominately sourced from the tertiary sector. The primary, secondary and tertiary sector comprises of 31%, 25% and 44 % of the total income in 1993. The income source from the primary sector has declined to 17%, while it has increased to 27% and 56% for the secondary and tertiary sectors in 2010. The income structure of India has been changing with the pace of economic reform measures after the comprehensive economic reform measures were introduced in 1991. Hence, the variation in secondary and tertiary sector is expected to have a higher impact than the primary sector on the regional income variation in India.

5 The capital depreciation rate 7 % is applied.
As regards to the PRC, though the secondary sector is its major sources of income, the tertiary sector also contributes significantly. The primary sector, secondary sector and tertiary sector accounted for 25%, 41% and 34% of total income in 1993. After reform measures were introduced in 1978, the PRC experienced a rapid and widespread industrialisation, and tertiarisation. Like India, the income source from the primary sector has declined to 15%, and the income sources from the secondary and tertiary activities have increased to 45% and 40% in 2010. The PRC, as a planned socialist country, had given priority to agriculture and industry, over the tertiary sector. As a result, the service sector’s share in value added is lower compared to other market economies with an identical level of development such as India. Similar to India, the variation in secondary and tertiary sector is also expected to be the driver of the regional income variation in the PRC.

Now all the regions in India and the PRC are categorized into three groups: - High Income (HI), Middle Income (MI) and Low Income (LI) regions, based on the annual average per capita income. The per capita income structures in the three groups are presented in Fig. 2. The figure shows that the per capita income in the HI states is mainly sourced from the tertiary sector in India. The gap in the overall per capita income between HI states and non-HI states is due to the differences in per capita income in the secondary and service sectors, while the difference in the service sector is higher than that of the secondary sector. There is no significant income gap in the primary sector between HI states and non-HI states. Further, the income gap between MI and LI states is mainly due to the service sector income as this is not significant in the primary and secondary sectors.
Figure 2: Regional Per Capita Income Structure (Annual averages in USD)

By and large, the patterns of regional per capita income in the provinces of the PRC are similar to that in India. However, the income gap between MI and LI provinces of the PRC is mainly due to the industrial sector unlike India.

Source: Author’s Calculation
Figure 3: Coefficient of Variations in Regional Per Capita Income (%)

Sources: Author’s calculation

The coefficient of variations in per capita income in the economy as a whole and three broad sectors are plotted in Figure 3. The coefficient of variation indicates the regional disparity in per capita income. The figure shows that the per capita income disparity in the secondary and service activities are significantly higher than the overall per capita income disparity in the Indian states. While, that of primary sector is lower than the overall regional income disparity during this study period. The rising trend of the regional income disparity from 44% in 1993 to 52% in 2010 is due to the disparities in the secondary and tertiary sector. The disparity in the primary sector has declined from 49% in 1993 to 41% in 2010.

The regional disparity in the total per capita income in the PRC is higher than that of India. The disparity in the secondary and service sectors across the provinces of the PRC are higher than that of the economy as a whole. While, the disparity in the primary sector is lower than the overall disparity. Though, there is a minor decline in overall disparity, still it is significantly high. Such decline in disparity is mainly due to the secondary sector and also the tertiary sector too.

3.2. Sources of Regional Disparity in Income

The above section establishes that there is high variation in per capita income in both countries, which is associated with the high variation in the per capita income in the secondary and tertiary sectors. Now this is important to analyse the decomposition of per capita income growth to know whether the high income growth is sourced from the growth of factor inputs and/or total factor productivity.
Figure 4: Coefficient of Variations in Labor Productivity and Employment Rate (%)

Sources: Author’s calculation

The per capita income growth comprises of labour productivity growth (LPG) and the growth of employment rate and (Mallick, 2017b).\(^6\) The coefficient of variation of the level of labour productivity and employment rate across the regions in the two countries are plotted in Figure 4. This shows that the regional disparity in the level of labour productivity is very high and significantly higher than that of employment rate in both the countries. That means such high regional disparity in the per capita income is associated with the high disparity in the labor productivity only. The regional disparity in employment rate is low in both the countries. Although, it is has declined in India since 2003, but it has been increasing in the provinces of the PRC from 9% in 1993 to 15% in 2010.

Now the per capita income growth across the regions in India and the PRC during the study period is decomposed based on Solow growth accounting approach as in equation 3. The results on contribution factor inputs i.e., growth of capital intensity and human capital, and total factor productivity growth to the per capita income growth for the three groups of region are presented in Figure 5 (see Figure A1 for all the regions).

\[\text{Per capita income} = \frac{Y}{\text{total population}} = \frac{(Y/L)}{(L/\text{total population})} \]
\[\text{or} \quad \text{Per capita income} = \frac{LP \times E}{\text{total population}} \]
\[(9) \]

Where, LP: labour productivity and E: employment rate. Taking natural logarithm and then deducting the log. of LP in the previous year in equation (9) would give us the growth of per capita income as the sum of LPG and the growth of employment rate (GE).
Table 5: Decomposition of per capita income growth in the three regions (%)

Sources: Author’s calculation

Figure 5 shows that the gap in per capita income growth in the three regions in India is due to the differences in TFPG and the growth of capital intensity. The annual average of the contributions due to the TFPG in HI, MI and LI states are 1.13%, 0.60% and 0.77%, respectively. The annual average of the contribution of capital intensity in the three regions are 1.62%, 1.40% and 1.10%. The per capita income growth in HI states is larger than the MI states, which is also larger than the LI states. Such nature of patterns of income growth leads to the rising trend of the per capita income in the Indian states.

The figure shows that, though there is no significant gap in terms of the per capita income growth, the LI region’s growth rate is lower than the non-LI region’s in the PRC. However, we observed that there is a significantly high regional disparity in per capita income in the PRC (see figures 4 and 5). This means that this disparity is mainly due to the huge gap in per capita income growth in the provinces in the years before 1993-94. That disparity has maintained during this study period as the per capita income in the lower income provinces do not grow at a higher pace than the upper income provinces. The gap in income growth is mainly due to the TFPG component during this study period unlike India. The annual average of contributions due to TFPG is 1.73%, 1.88 and 1.64%, and due to capital intensity are 1.93%, 1.99% and 1.88% in HI, MI and LI provinces, respectively.
4. Empirical results

The impact of the globalization on the per capita income growth (GPY) between 1993 and 2010 has been examined through the functional specification (4) by using the dynamic spatial panel data methods. The equation is expected to be dynamic in nature, as the previous years’ income growth could be one of the regressors as highlighted in growth convergence literature. Further, FDI along with capital formation is expected to have endogenous relations (Zhang, 2002; Zhang and Zhang, 2003; Li and Liu 2005). Because multi-national enterprises look for investment in the regions which have higher productivity and economic growth to minimize their cost of production. Hence, the panel SAR and SDM regressions are estimated by using the dynamic GMM system method. The results of four sets of specifications are provided in tables 1 and 2 for India and the PRC, respectively. Two of the specifications are estimated by SAR. As it does not capture the spatial effect of the independent factors, they are re-estimated by SDM.

The empirical estimation is started with SAR specification or Model 1, which includes three independent factors along with the lag year of GPY. The result suggests that the autoregression coefficient for the spatial effect is statistically significant with a positive sign in India. This means that the income growth in the neighbouring regions affects that of a given region positively. This is due to the technological diffusion, inter-regional trade, migration and capital movement etc. which are not captured in this specification. Further, the impact of globalization as captured through the coefficient of FDI is positive and statistically significant. This indicates the significance of FDI to boost inter-regional economic growth. The coefficients of the two control variables are statistically significant with the positive sign. This result suggests that human capital and physical investment are the important factors for the variation in economic growth across the Indian states. The findings of this study corroborate with several earlier findings in the context of Indian states (Mallick, 2013b; 2014). Mallick (2013b) finds the positive impact of FDI on inter-state income, which could be through the productivity growth as evidenced in Siddharth and Lal (2004). Similarly, Mallick (2014) established that human capital and physical investment are crucial for inter-state income in India. Further, other studies-with a somewhat different focus such as Kathuria et al (2013) emphasized the importance of human capital in boosting productivity in the Indian states.
The SDM specification or Model 2 provides the additional findings that the spatial effects of investment and human capital are negative. That means due to the inter-regional competition the inflow of investment in one region affects the investment inflows in its neighbouring regions adversely, and hence on the income growth. Similarly, the human capital in neighboring regions has a negative effect on the economic growth in a given region, which is also evidenced in Olejnik (2008). The increasing human capital in a given region is sourced from the migration of educated people from the neighboring regions, which affect a neighboring region adversely. This is known as the brain drain effect.

Table 1: Globalisation and regional per capita income growth (India)

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAR</td>
<td>SDM</td>
<td>SAR</td>
<td>SDM</td>
</tr>
<tr>
<td>L.GPY</td>
<td>-0.28 (0.03)*</td>
<td>-0.26 (0.03)*</td>
<td>-0.28 (0.03)*</td>
<td>-0.26 (0.03)*</td>
</tr>
<tr>
<td>FDI</td>
<td>0.05 (0.03)***</td>
<td>0.045 (0.03)***</td>
<td>0.36 (0.15)*</td>
<td>0.52 (0.16)*</td>
</tr>
<tr>
<td>INV</td>
<td>0.12 (0.01)*</td>
<td>0.12 (0.01)*</td>
<td>0.11 (0.01)*</td>
<td>0.11 (0.01)*</td>
</tr>
<tr>
<td>HK</td>
<td>1.19 (0.17) *</td>
<td>1.72 (0.30) *</td>
<td>1.23 (0.16) *</td>
<td>1.85 (0.26) *</td>
</tr>
<tr>
<td>INT1</td>
<td>0.31 (0.013)***</td>
<td>0.45 (0.14)*</td>
<td>0.002 (0.004)</td>
<td>0.001 (0.004)</td>
</tr>
<tr>
<td>INT2</td>
<td>0.002 (0.004)</td>
<td>0.001 (0.004)</td>
<td>0.002 (0.004)</td>
<td>0.001 (0.004)</td>
</tr>
<tr>
<td>wGYPY</td>
<td>0.06 (0.01)*</td>
<td>0.11 (0.02)*</td>
<td>0.06 (0.01)*</td>
<td>0.11 (0.02)*</td>
</tr>
<tr>
<td>wFDI</td>
<td>0.003 (0.02)</td>
<td>-0.02 (0.02)</td>
<td>0.003 (0.02)</td>
<td>-0.02 (0.02)</td>
</tr>
<tr>
<td>wINV</td>
<td>-0.01 (0.004)*</td>
<td>-0.01 (0.004)*</td>
<td>-0.01 (0.004)*</td>
<td>-0.01 (0.004)*</td>
</tr>
<tr>
<td>wHK</td>
<td>-0.19 (0.09)**</td>
<td>-0.22 (0.08)*</td>
<td>-0.19 (0.09)**</td>
<td>-0.22 (0.08)*</td>
</tr>
<tr>
<td>Observations</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Regions</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Wald test</td>
<td>1214.68*</td>
<td>1189.21*</td>
<td>1313.20*</td>
<td>1302.59*</td>
</tr>
<tr>
<td>F test</td>
<td>242.94*</td>
<td>148.65*</td>
<td>187.6</td>
<td>130.26*</td>
</tr>
<tr>
<td>(Buse 1973) R2 Adj</td>
<td>0.79</td>
<td>0.79</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Raw Moments R2 Adj</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-538.62</td>
<td>-537.89</td>
<td>-535.34</td>
<td>-533.83</td>
</tr>
<tr>
<td>AIC</td>
<td>1.75</td>
<td>1.78</td>
<td>1.74</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Note: *, **, *** significant at 1 percent, 5 percent and 10 percent level. The parenthesis figures are the estimated standard errors.

Further, there may be multicollinearity relations of FDI with physical investment and human capital. Hence, the Model 3 and Model 4 estimate SAR and SDM models by adding two interaction terms, INT1 and INT2 as regressors. The positive (negative) sign of INT1’s coefficient indicates that there is crowding-in (crowding out) relation between FDI and physical investment. Similarly, the positive (negative) sign of the coefficient of INT2 suggests that FDI affects human capital positively (negatively).
Model 3 shows that the two interaction effects are statistically significant with positive signs. This indicates that FDI is also contributing to economic growth indirectly by crowding-in the domestic investment and promoting human capital in the Indian states, as evidenced in Mallick (2013b; 2016; 2017b) in India. This finding is in line with some other studies such as Borenzstein et al (1995); Cohen (1993); Romer (1993). Borenzstein et al (1995) evidenced that the interaction effects of FDI with domestic investment and human capital for the national economic growth are positive in the developing countries. Cohen (1993) finds a positive interaction between human capital and the overall access to foreign financing of developing countries.

Model 3 provides an additional important finding is that the coefficient of FDI is larger than that of capital formation. The values of coefficients of FDI and investment in Model 3 are 0.36 and 0.11 respectively. This indicates that 1% increase in the share of FDI in GDP leads to 0.36% increase in income growth, and 1% increase in physical investment rate increases in income growth by 0.11%. It can be inferred, therefore that FDI encourages economic growth than physical investment. The findings corroborate with Mallick (2013b) and Goldar et al (2003) in India. According to Findlay (1978), the multinational enterprises usually operate at the technological frontier. They are well-equipped with new modern technologies and advanced managerial skills, which are lacking with the domestic enterprise in the developing countries (Blomstrom, et al., 1994). This makes foreign firms more productive and efficient than the domestic firms.

Similarly, the interaction terms are incorporated in the SDM specification in Model 4, which provides similar findings as noted in previous models. Further, this is noticed that the one year lag of per capita income growth is statistically significant and negative in all the models in Table 1. This suggests that income growth is converging across the Indian states with conditioning the spatial correlations, FDI, physical investment and human capital during this study period.

As regards to the PRC’s provinces, by and large, our results are similar in Table 2 as we found in the context of India. FDI, physical investment and human capital are significant in all the models. This finding is consistent with Biggeri (2003), Bonnfond, (2014), Xu et al. (2008), Zhang and Zhang (2003), Zhang (2002) and Wei and Hao (2011) to establish the positive impact of FDI, physical investment and human capital on productivity growth, and hence the economic growth in the PRC’s provinces. However,
the results with regards to the neighborhoods effect of FDI and physical investment are different that of India. There is no neighbor effect of physical investment in the provinces in the PRC. The neighborhoods effect of FDI is positive and significant in the final model, which suggests that FDI has positive externality or agglomeration or spillover effect on its neighborhoods provinces in the PRC. This result is in confirmation with the pioneering study of Coughlin and Segev (2000). This is also important to note that there are the visible differences in the magnitude of the coefficients of human capital between India and the PRC, which is due to the differences in measurement of human capital. Human capital represented by the enrolment in higher educational institutions, and literacy rate by age 15 and above in India and the PRC, respectively. This finding provides an important message that higher level of education has a larger effect on economic growth, as deduced by Lucas (1988) and Kremer and Thompson (1993).

Table 2: Globalisation and regional per capita income growth (PRC)

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAR</td>
<td>SDM</td>
<td>SAR</td>
<td>SDM</td>
</tr>
<tr>
<td>L.GPY</td>
<td>0.01 (0.03)</td>
<td>0.01 (0.03)</td>
<td>0.03 (0.03)</td>
<td>0.02 (0.03)</td>
</tr>
<tr>
<td>FDI</td>
<td>0.04 (0.02)***</td>
<td>0.006 (0.03)</td>
<td>0.18 (0.12)***</td>
<td>0.24 (0.13)***</td>
</tr>
<tr>
<td>INV</td>
<td>0.02 (0.01)*</td>
<td>0.014 (0.01)***</td>
<td>0.02 (0.01)**</td>
<td>0.015 (0.01)***</td>
</tr>
<tr>
<td>HK</td>
<td>0.01 (0.003) **</td>
<td>0.03 (0.01) *</td>
<td>0.01 (0.003) **</td>
<td>0.03 (0.01) *</td>
</tr>
<tr>
<td>INT1</td>
<td>0.00 (0.003)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.003)</td>
<td>0.00 (0.003)</td>
</tr>
<tr>
<td>INT2</td>
<td>0.01 (0.003)**</td>
<td>0.00 (0.003)</td>
<td>0.00 (0.003)</td>
<td>0.00 (0.003)</td>
</tr>
<tr>
<td>wGDP</td>
<td>0.12(0.01)*</td>
<td>0.14(0.01)*</td>
<td>0.11(0.01)*</td>
<td>0.14(0.01)*</td>
</tr>
<tr>
<td>wFDI</td>
<td>0.006(0.01)</td>
<td>0.02 (0.10)***</td>
<td>0.02 (0.10)***</td>
<td></td>
</tr>
<tr>
<td>wINV</td>
<td>0.004 (0.003)</td>
<td>0.003 (0.003)</td>
<td>0.003 (0.003)</td>
<td>0.003 (0.003)</td>
</tr>
<tr>
<td>wHK</td>
<td>-0.005 (0.001)*</td>
<td>-0.006 (0.001)*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations: 480
Regions: 30
Wald test (Buse 1973) R2 Adj: 4320.37* 4343.03* 4432.43* 4474.16*
F test (Buse 1973) R2 Adj: 864.07* 542.87* 633.2* 447.41*
Raw Moments R2 Adj: 0.90 0.90 0.90 0.90
Log Likelihood: -728.03 -727.67 -727.32 -728.56
AIC: 1.24 1.26 1.25 1.27

Note: *, **, *** significant at 1 percent, 5 percent and 10 percent level. The parenthesis figures are the estimated standard errors.

However, the analysis of the PRC provides some different results from that of India. The interaction effect between FDI and physical investment is not significant. This is a most debating issue in the PRC. Many scholars believe that FDI promotes PRC’s
economic growth mainly through factors of production, but it crowds out domestic investment (Huang 2003; Buckley et al. 2002) due to PRC’s high saving rates and preferential policies to FDI. However, some other studies were not able to establish such crowding-out effect of FDI (Agosin and Machado 2005; Wang and Li 2004). Further, the positive relationship between FDI and human capital is established through the positive and the statistical significance of coefficient of INT2 in Model 3. However, this coefficient is not statistically significant in Model 4, which could be due to using a larger number of regressors. Furthermore, the positive and statistically insignificant coefficient of L.GPY, suggests that the growth does not converge in the PRC’s provinces unlike India.

Table 3: Regional Convergence of per capita income growth (SAR Estimation)

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>India Reg. 1</th>
<th>India Reg. 2</th>
<th>India Reg. 3</th>
<th>PRC Reg. 1</th>
<th>PRC Reg. 2</th>
<th>PRC Reg. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ly0</td>
<td>-24.46**</td>
<td>-25.08**</td>
<td>-</td>
<td>-3.95</td>
<td>-3.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.1)**</td>
<td>(15.20)**</td>
<td>29.19(15.61)**</td>
<td>1.47(0.07)*</td>
<td>(0.88)*</td>
<td>(1.09)*</td>
</tr>
<tr>
<td>Effective population growth</td>
<td>-29.91**</td>
<td>-30.33**</td>
<td>26.47</td>
<td>-0.48</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.73)**</td>
<td>(15.73)**</td>
<td>(15.40)**</td>
<td>(0.31)**</td>
<td>(0.31)**</td>
<td></td>
</tr>
<tr>
<td>Investment</td>
<td>0.08(0.05)**</td>
<td>0.09 (0.05)**</td>
<td>0.32</td>
<td>-0.08*</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>HK</td>
<td>10.45</td>
<td>0.72</td>
<td>0.67</td>
<td>0.67</td>
<td>(0.08)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.03)**</td>
<td>(0.04)*</td>
<td>(0.05)*</td>
<td>(0.08)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial rho.</td>
<td>0.33</td>
<td>0.32 (0.11)*</td>
<td>0.72</td>
<td>0.67</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>R-square</td>
<td>0.22</td>
<td>0.27</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>120</td>
<td>120</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Regions</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Note: *, **, *** significant at 1 percent, 5 percent and 10 percent level. The parenthesis figures are the estimated standard errors.

However, the annual time length’s data may not be enough to study the growth convergence (Islam, 1995). Hence the total time period from 1993–1994 to 20010–2011 is divided into three-year shorter time periods to further examine the long-run dynamics of regional income. Here, the dependent variable is the growth of per capita income between the initial year and final year, and independent variables are the natural logarithm of per capita income (Ly0), and investment rate and human capital in the initial year in the three-year span period. The SAR estimation in Table 3 confirms that there is the conditional convergence of per capita income and significant positive effect of spatial lag effects in India and the PRC. The findings of the study corroborate with Cashin and Sahay (1996), Aiyer (2001) and Mallick (2014) in India. Some studies in the PRC also
evidenced the conditional convergence (Bonnefond, 2014), which is due to the implementation of regional development programs in the recent years.

5. Conclusions and Policy Implications

This paper provides an explanation for the growing regional income disparity in the emerging countries, with special emphasis on the role of globalization and neighborhoods relations in the Indian states and the PRC’s provinces in 1993–2010. The preliminary analysis shows that the high variation regional per capita income in these two countries is due to the high regional variation in income in secondary and service sector activities. The growth accounting approach establishes that the gap in TFPG leads to the gap in regional income growth in the PRC. In India, this and the gap in capital intensity are the sources of imbalances in per capita income growth.

The empirical analysis establishes certain important findings. There is a positive impact of globalization represented by FDI on the inter-regional income growth in both countries. As regards to its other indirect effects, FDI has the positive impact on the domestic capital formation in India only, and positive impact on human capital and positive effect of neighborhood effect in the PRC only. However, both countries experience a negative brain drain effect across the regions. That means the human capital of neighboring regions affects the income growth of the given region adversely in both countries.

The income growth of neighboring regions affects that of a given region positively in both countries. Only in case of India, the capital formation in the neighboring states affects the income growth of a given state adversely, which is not evident in the PRC’s provinces. The final result confirms that there is conditional spatial convergence in both the countries during this study period.

The empirical analysis establishes that FDI is crucial for the regional economic growth in both the countries, where FDI broadly represents the degree of economic globalization. Based on the results of the study, regions with a greater degree of economic globalization or integration, everything else being equal, have higher growth. This is potentially important since the level of international market integration in many emerging countries still has a large potential to grow. Accordingly, policy-makers should pay particular attention to the lagging regions for a greater degree of economic integration with the rest of the world. The results of this paper provide an additional contribution to
the debate by emphasizing the impact of economic globalization and integration on regional income disparity within a country.

The FDI has positive neighborhoods effect in the provinces of the PRC only, which is a policy lesson to the Indian states as well. As the efficiency and productivity of FDI mainly depend on the improved human capital, which is deficient in the lagging regions in India. This makes the FDI spillover effect insignificant in the neighboring states in India.

The various governments should take the neighborhoods relations into consideration while making policies of human capital investment. Particularly, the low-income regions are at a disadvantage in economic development, employment opportunities, and development opportunities. This is not only difficult for them to attract high-quality talents from other states but also hard to keep their own intellectuals. Hence, it is imperative to establish a long-term mechanism of human capital mobility and the promotion of human capital in the lagging regions through the implementation of a variety of policies. For instances, the central government should strengthen the financial support for the lagging regions, through increasing transfer payments and supporting the education in rural underdeveloped areas etc. The promotion of human capital in the lagging regions will lead to positive neighborhoods effect, which will strengthen the spillover effect of FDI to the neighboring regions. Consequently, this will further strengthen the neighborhoods effect of the income growth among the regions.

The paper has few limitations. For instance, FDI is used to represent the degree of economic globalization without considering the international trade component due to the unavailability of international trade data in the Indian states. Similarly, the study noted the brain drain effect of human capital on the neighboring regions of both India and the PRC. However, a few existing studies namely Ramos et al (2009) and Wang and Ni (2015) highlight the heterogeneous effect of the levels of human capital in such relationship. Hence, this needs further analysis by including primary, secondary and tertiary education levels to uncover the detailed neighborhoods relationships.
References

Hale, Galina and Cheryl Long.(2007). Is There Evidence of FDI Spillover on Chinese Firms’ Productivity and Innovation?. *Yale University Economic Growth Center Discussion Paper No. 934.*

Wang, Z., and Z. Li, 2004, Re-examine the crowd in or crowd out effects of FDI on domestic investment, Statistical Research, July 37-43.

Appendices

Table A1: Data and Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measurement</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>Regional domestic product</td>
<td>Sources: India - Central Statistical Organisation (CSO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sources: People’s Republic of China - National Bureau of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistics of China (NBSC)</td>
</tr>
<tr>
<td>Labor</td>
<td>Employed person</td>
<td>Sources: Estimated from the National Sample Survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organisation (NSSO) + data following the approaches of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mallick (2017a)</td>
</tr>
<tr>
<td>Capital</td>
<td>Capital stock</td>
<td>Sources: Estimated from the CSO data following the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>approaches of Mallick (2017a)</td>
</tr>
<tr>
<td>Investment</td>
<td>Percentage of investment in income</td>
<td>Sources: Investment is the net addition of capital</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stock.</td>
</tr>
<tr>
<td>Human capital</td>
<td>The percentage of educated people to</td>
<td>Sources: The percentage of enrolment of students in</td>
</tr>
<tr>
<td></td>
<td>total population.</td>
<td>higher education to total population. Annual reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of University Grant Commissioner of India</td>
</tr>
<tr>
<td>FDI</td>
<td>Percentage of FDI in income</td>
<td>Sources: Secretariat of Industrial Assistance (SIA)</td>
</tr>
</tbody>
</table>

Table A2. Basic Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>India</th>
<th>People’s Republic of China</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs</td>
<td>Mean</td>
</tr>
<tr>
<td>GPRDP</td>
<td>340</td>
<td>2.18</td>
</tr>
<tr>
<td>GRDP</td>
<td>340</td>
<td>2.91</td>
</tr>
<tr>
<td>FDI</td>
<td>340</td>
<td>0.77</td>
</tr>
<tr>
<td>HK</td>
<td>340</td>
<td>0.95</td>
</tr>
<tr>
<td>Investment</td>
<td>340</td>
<td>10.39</td>
</tr>
</tbody>
</table>
Figure A1: Decomposition of per capita income growth (%)