Exports from WAEMU* under Raw Materials Curse

FE Doukouré Charles †

8 février 2011

Abstract: This analysis seeks to understand how far natural resources curse work in WAEMU's foreign trade. With an augmented gravity model, I show that reinforcing the control of corruption is in favor of expanding foreign trade both intra and total exports from WAEMU. But, improving public services effectiveness works against expanding total exports. So does reinforcing democracy. It slows down intra exports in WAEMU. Among raw materials curse’s symptoms, only these aspects of institution quality doesn’t work against expanding exports. It is not necessary to improve this situation because exports in WAEMU is matter of raw materials mainly.

JEL classification: F 15, F 18, C 23, R 11.

Keywords: Exports, Gravity model, Institution quality, Raw materials curse.

*WAEMU stand for West African Economic and Monetary Union. It is a customs union with huit members: Bénin, Burkina Faso, Côte d’Ivoire, Guinée Bissau, Mali, Niger, Senegal and Togo.

†ENSEA d’Abidjan, Paris School of Economics and University Paris I. Email: fedoukoure@yahoo.fr; fedoukoure@malix.univ-paris1.fr
Introduction

The impact of trade openness on economic development and social specific dimensions in Africa such poverty might be well known through a better knowledge of institutions (Dollar and Kraay, 2003). Indeed, the consequences of institutions on foreign trade would remove ambiguity in understanding the level and dynamic of Sub Saharan Africa's (SSA) trade. It is estimated that the gap between effective results and results expected and the failure of trade openness policies could be explained by the malfunctions of national, sub regional and regional institutions (Harrison and Tang, 2005). Also, the poor performance of sub-Saharan economies is due to inadequate economic infrastructure quality, poor management of economic policies and renewed instabilities, the existence of cross-border trade in fraudulent through social and economic variables (Coulibaly, 2007; Agbodji, 2007, 2008) but also to the abundance of natural resources (Carbonnier, 2007).

Building on these studies, I analyze the role of institutional environment and structure of products traded in foreign trade of WAEMU. Thus, this Working first attempt to assess the impact of factors such as control of corruption, effectiveness of public services and the rule of law. These aspects are important in African countries context in general and those of the WAEMU especially because the institutional environment determines the inflow of Foreign Direct Investments (Elbadawi, 1997), an important vector of economic growth and poverty reduction for the continent. Indeed, if trade between African countries is important, then the problems of outlets and conditions of access to the internal market summarize the strengthening of the motivations for locating Africa. However, this raises another question about what is the structure of products traded? In fact, the exploitation of natural resources and raw materials may have negative impact on the economy: the natural resources curse. In addition, it is obvious that if trade deals on an homogenous range of products, consistent level of exchanges will not be the same if not.

The interest of this study is twofold. First, regardless of that, this study takes into account variables of structure and institutional quality in explaining WAEMU’s exports. The scientific contribution of this paper is more methodological. In Indeed, I dissociate the decision to export and this export value determination. The estimate of a Type II Tobit model, allows us to highlight these two aspects which for us is not always dependent on the same variables and this has not been highlighted in previous studies. Indeed, decide to export may depend primarily on institution quality variables while determining the value of exports depends more on economic
variables. Second, orientation of the analysis seeks to understand how far natural resources curse works in WAEMU’s foreign trade. Does the preponderance of raw materials part reinforce inequalities, weaken public services and lack of democracy, as well as encourage corruption and slow down economic growth? These are contribution of this work in understanding the low level of WAEMU’s foreign trade. It appears from analysis that improving the efficiency of public services and strengthening the rule of law penalize exports from WAEMU. In addition, the strong divergence of products exported by WAEMU towards the rest of the world constitutes a potential obstacle to expanding foreign trade. Unsurprisingly, the level of development remains an major handicap to the growth of foreign trade in the WAEMU.

The following article attempts to understand this result by analyzing potential factors limiting the expansion of WAEMU’s exports despite the implementation of the first trade agreement. Section 1 describes WAEMU’s foreign trade and analyzes the structure of traded goods and the evolution of the institutional environment between 1996 and 2006. Section 2 describes the methodology used in this study. In Section 3, data and variables are presented. Section 4 gives the main results before concluding.

1 Foreign trade, traded goods structure and institution quality in WAEMU

1.1 Foreign trade and traded goods structure

International trade is not a recent phenomenon in the world. Indeed, since 19th century, it has increased with a faster rate than the world production. This trend has become more marked after world war II, so that between 1980 and 2000 world trade value is multiplied by 3.3 while the world production is by 1.6 (Mucchielli and Mayer, 2005; Krugman and Obstfeld, 2006). In this view, international trade is seen as an engine of growth. The main source of such increases is the decrease in transportation costs, thanks to development of transportation more efficient and faster (the railway, aircraft) and the improvement of maritime transport; there is also the reduction of transaction costs with communication infrastructures development.

The meteoric rise of international trade has been accompanied by changes in its structure, according to the nature of products traded in the geographical distribution of such exchanges. So, during the two last century, the share of manufactured products in the global trade doesn’t
stop rising at the expense of agricultural products and extractive industry products. Moreover, the share of services in international trade has increased considerably and they now take a key place in exchange. During the past forty years, share of primary products in the exports of developing countries has declined relatively even if they remain their main source of foreign exchange. Developing countries are thus forced to adapt the structure of their international trade to the global trade new context. Because this change may influence potential gains of trade openness in a context of globalization. The current trend in international trade gives pride to manufactured goods and other products except agricultural products and extractive industry products (Mucchielli and Mayer, 2005; Krugman and Obstfeld, 2006). Correspondingly to the change of trade structure, international trade was required to concentrate geographically around three areas constituting the so-called Triad (North America, European Union and Asia) or even within each of these areas (intra-area). This dynamic has marginalized parts of the world (Eg Africa, Central-Eastern Europe, Middle East, Latin America). Has WAEMU’s trade structure experienced similar changes since its creation? Is WAEMU’s trade structure close to the rest of the world?

1.2 Foreign trade and institutional environment

There is two lines of research on the link between institutions quality and foreign trade in Economic literature. The first line consider the impact of national institution quality on bilateral trade. Here, the consequences of the similarity of institutions on international trade are analyzed. Indeed, this similarity may improve the ability of exporters and importers adapt to its partner institutions. Thus, Disdier and Mayer (2005) argue that the similarity of institutional frames partly explains why some older exchange settlements "abnormally too much" with their former colonizer, but also why two countries with the same colonizer share more with each other.

The second line examines the impact of national institutions quality on bilateral trade dynamic. It is recognized that good quality of institutions in partner countries increases bilateral trade to the extent that it reduces transaction costs and risks inherent in international trade. Anderson and Marcouiller (2002) show that the poor quality of national institutions is an obstacle to developing bilateral trade because it increases risks and uncertainties arising from international transactions that are including breach of contract, theft and corruption. Their model of import demand in an uncertain environment is demonstrated that the insecurity of trade increases the price of exchange goods manner equivalent to a hidden tax or a customs duties and therefore
reduces the volume of bilateral imports. And they show that the amount of the fees is even higher than the national institutions are in bad institutions quality environment. This negative impact is even greater for international transactions because they involve systematically sunk costs and that alternatives are rare their research and expensive for breach of contract (De Sousa and Dändler, 2006). Many empirical studies have confirmed this negative impact of poor or bad institutions quality on trade (Babestkai-Kukharshuk et Maurel, 2004; Méon et Sekkat, 2004; Lavallée, 2006).

However, Lavallée (2006) also concluded that this impact is asymmetric. She shows that a country exports more than its institutions are good, but the quality of institutions of the importing country only affects exports from developed countries. Talking about the dynamics of trade, Groot and al (2003) argue that institutional factors are important in explaining the level of transaction costs and other distortions. The state institutions in fact (Rodrik, 2002; Treisman, 2000; Hisamatsu, 2003) directly influences the behavior of exporters or affects economic variables which could produce a reduction of propensity to import of agents.

For example, the lack of transparency in administrative procedures appears to be an additional charge for risk neutral agents (Anderson and Young, 2000). Previous studies on the dynamics of trade in Sub Saharan Africa do not address the role of these institutions particularly in explaining trade dynamics. What is the role of institutional quality in WAEMU’s exports? Does the abundance of natural resources is a handicap to the expansion of its foreign trade?

2 Methodology

This section present the specification of the gravity model, the estimation method and the expected signs for the variables of interest.

2.1 Gravity model specification

I use the formulation of gravity equation proposed by Anderson and Van Wincoop (2003):

\[X_{ij,t} = \frac{Y_{i,t} \ast Y_{j,t}}{Y_{w,t}} \left(\frac{T_{ij,t}}{\Pi_{i,t} P_{j,t}} \right)^{1-\sigma} \]

(1)

where \(X_{ij,t} \) is exports of country \(i \) toward country \(j \) at time \(t \), \(Y_{i,t} \) and \(Y_{j,t} \) are their GDP, \(Y_{w,t} \) is the world GDP, \(T_{ij,t} \) represents the exchange costs. At last, \(\Pi_{i,t} \) and \(P_{j,t} \) account for multilateral

1. cited by Lavallée, 2006
resistance of countries \(i \) and \(j \) respectively. Its summarize the mean trade-resistance of a country from its whole trade partners In others words, \(P_{j,t} \) catches the impact of openess on country \(i \) facing all imports from the rest of the world and \(\Pi_{i,t} \) the openess of the rest of the world facing country \(i \) exports. If transaction costs are symmetric, i.e. \(T_{ij,t} = T_{ji,t} \), then \(\Pi_{i,t} = P_{i,t} \). So, gravity equation becomes:

\[
X_{ij,t} = \frac{Y_{i,t} \cdot Y_{j,t}}{Y_{w,t}} \left(\frac{T_{ij,t}}{P_{i,t} \cdot P_{j,t}} \right)^{1-\sigma}
\]

Finally, bilateral exports value \(X_{ij,t} \) depends on country size, but also transaction costs \((T_{ij}) \) between partners and multilateral trade-resistance of partners \((P_{i,t} \text{ and } P_{j,t}) \). According to Anderson and Marcouiller (2002) and Lavallée (2006), I specify a transaction cost function in which good institution quality leads to reduce trade barriers so that it increases trade \((3) \):

\[
T_{ij,t} = D_{ij}^\alpha \cdot e^{[\alpha_1 A_{ij,t} + \alpha_2 B_{ij,t}] \cdot Inst_{i,t}^\alpha \cdot Inst_{j,t}^\alpha}
\]

where, \(D_{ij} \) is the distance between country \(i \) and country \(j \), \(A_{ij,t} \) and \(B_{ij,t} \) are set of dummy variables used traditionally in a gravity model specification. Institution quality are modeled through indicators, \(Inst_{i,t} \) and \(Inst_{j,t} \), respectively for country \(i \) and \(j \) at time \(t \). Then I substitute \((3) \) in and I transform with the log. Gravity equation becomes:

\[
\ln X_{ij,t} = \beta_0 + \beta_1 \ln Y_{i,t} + \beta_2 \ln Y_{j,t} + \beta_3 \cdot Sim_{ij,t} + \beta_4 \ln D_{ij} + \\
\beta_5 \cdot A_{ij,t} + \beta_6 \cdot B_{ij,t} + \beta_7 \ln Inst_{i,t} + \beta_8 \ln Inst_{j,t} + \mu_{ij,t}
\]

with \(\mu_{ij,t} \) the error term. The test for the existence of specific effects of the panel leads to the rejection of the null hypothesis that is why in the theoretical formulation of the gravity equation \((4) \), there is no terms

2.2 Equation to estimate

I consider all WAEMU’s trade partners in the world even if there are null values between 1996 and 2006. Indeed, this null values are important in the analysis because I get information on exporting countries behavior with them. When the global income decreases substantially over time and the partner is too far away from WAEMU member country, rationality suggest that it is optimal to trade more with neighbors and nearest countries. So, low values and zero trade are important information about WAEMU exports with partners. However, using the log will be impossible because of zero value. That is why I turn to a semi-log specification considering the dependant variable as a truncated variable and I add +1 on the lowest value in order to get
positive values for the dependant variable. Finally the equation to estimate is:

$$EX_{ij,t} = \beta_0 + \beta_1 \cdot \ln PIB_{i,t} + \beta_2 \cdot \ln PIB_{j,t} + \beta_3 \cdot \text{Sim}_{ij,t} + \beta_4 \cdot \ln Distance_{ij} + \beta_5 \cdot \text{Frontiere}_{ij} + \beta_6 \cdot \text{Maritime}_{ij} + \beta_7 \cdot \text{Creation}_{ij,t} + \beta_8 \cdot \ln Institution_k^i + \beta_9 \cdot \ln Institution_k^j + \beta_{10} \cdot \ln \text{Concent}_{i,t} + \beta_{11} \cdot \ln \text{Diversif}_{i,t} + \mu_{ij,t}$$

(5)

with, $EX_{ij,t}$ defined as follows:

$$EX_{ij,t} = \begin{cases} EX_{ij,t}^* = \ln(1 + \text{Exportation}_{ij,t}) & \text{if } X_{ij,t} > 0 \\ 0 & \text{if } X_{ij,t} = 0 \end{cases}$$

where $\text{Exportation}_{ij,t}$ is exports value between countries at time t and the transformation $\ln(1 + \text{Exportation}_{ij,t})$ in order to manage with positive values of exports only after transforming in log.

After that, I suppose a sequential behavior in exporting from WAEMU with two steps. First of all, each country decide to export or not. This decision is modeled as follows based on a criterium refereed by a latent variable Z_{ij}^*:

$$Z_{ij,t}^* = \begin{cases} 1 & \text{si } X_{ij,t}^* > 0 \\ 0 & \text{si } X_{ij,t}^* = 0 \end{cases}$$

Then, the second step refers to choose the value of exports after decided to export. If I write $EX_{ij,t}$, the effective value of country i exports towards country j, this is defined by:

$$EX_{ij,t} = \begin{cases} EX_{ij,t}^* & \text{si } X_{ij,t}^* > 0 \\ 0 & \text{si } X_{ij,t}^* = 0 \end{cases}$$

One of the advantages of this approach is that, it allows us to point out the relationship between the two main decisions in this behavior: 1, the decision to export and 2 the determination of the effective value of exports. It is a type II Tobit model because, only the sign of $X_{ij,t}^*$ through $Z_{ij,t}^*$ is useful and $EX_{ij,t}$ is truncated as I said before. What method will I perform to estimate this equation? Generally speaking, Tobit model parameters are estimated by Maximum Likelihood (ML) method. However, it will be useful to perform others methods in order to determine initial conditions in numeric optimization algorithms of ML method. Among theses, there is Heckman (1976), two steps estimation method. I use this approach in order to catch the impact of unobservable variables on the dependant variable. On the first step, I estimate the following Probit
model:

\[Z_{ij,t}^* = \begin{cases}
1 & \text{si } X_{ij,t}^* > 0 \\
0 & \text{si } X_{ij,t}^* = 0
\end{cases} \] \hspace{1cm} (6)

It is the decision of exporting or not for each country member which depends on: economic conditions in both countries, the quality of economic infrastructures (communication and roads), the institutions quality, and some transaction costs, etc. \(X_{ij,t}^* \) follows \(N(x_{1,ijt},\sigma_1^2) \). The probit model estimated at this level is:

\[\text{Prob}(Z_{ij,t}^* = 1) = \text{Prob}(X_{ij,t}^* > 0) = \phi(x_{1,ijt},\theta_1) \] \hspace{1cm} (7)

Suppose that \(\hat{\theta}_1 \) is a convergent estimator of \(\theta_1 \) in the Probit model. With \(\hat{\theta}_1 \), I calculate Mills ratio \(\lambda(x_{1,ijt},\hat{\theta}_1) \) for each observation. Then suppose also that \(\hat{\lambda}(x_{1,ijt},\hat{\theta}_1) \), is the estimator calculated. What about the second step?

On the second step, I regresses by Ordinary Least Square on positive values of \(EX_{ij,t} \) introducing Mills ratio as an explanatory variable. The equation to estimated is as follows:

\[EX_{ij,t} = x_{2,ijt}\beta_{2,ij} + \frac{\sigma_2^2}{\sigma_1^2}\hat{\lambda}(x_{1,ijt},\hat{\theta}_1) + \tilde{\mu}_{2,ijt} \] \hspace{1cm} (8)

This model estimates exports value of each country which depends on a set of explanatory variables \(x_{2,ijt} \). Because of heteroscedasticity, I use General Least Squares Method to estimate

As far as it concerns institution quality indicators and traded goods structure, I expect two results. First, raw materials and extractive industry products are the main goods exported by WAEMU, and this situation is not profitable for expanding exports from this area according to improve institution quality for better results. Then, a high level of corruption, the weakness of public service efficiency and lack of democracy in WAEMU work in favor of expanding exports as typical symptoms of raw materials curse. Do all these symptoms appear in explaining WAEMU’s exports?

3 Data

For exports data, I use the FOB value, in millions of US dollar, of exports flows of all WAEMU member country from 1996 to 2006, from International Monetary Fund (IMF) database, Data On Trade Statistics (DOTS), 2008. I call this variable Exportations. Note that, exports earnings
in WAEMU doesn’t cover imports expenditures. Its represent around 75% of imports. However in this area, foreign trade share in economic activities is about 40%. But, the share of regional exports in global world trade is very small. Indeed, according to UNCTAD statistics book, 2008, is about 0.12% in 2005. It is 0.13% for imports the same year. And as we can see on this graph (graph 1), intra exports are lower than export toward the rest of the world. GDP data come from World Bank database, WDI, 2009. I use GDP in current price, in millions of US dollar, and GDP per capita. Data on Distance, are from CEPII database. I use distance between the main city of each partner. I consider frontier a dummy equals to 1 if countries share a same frontier and 0 otherwise. There is also direct access to the sea, equals to 1 if one of countries in the pair has direct access to the sea and 0 otherwise. Analyzing the global export, I introduce also Creation an other dichotomous variable which is equal to 1 if both countries are WAEMU member country...
and 0 otherwise. This allows us to catch the impact of WAEMU on expanding exports. Similarity is another variable in the specification of the gravity equation. According to (Agbodji, 2008) if countries are so similar in the same area, this can slow down trade dynamic. I keep Egger (2000) formulation to build this indicator:

$$Sim_{ij} = \ln \left[1 - \left(\frac{PIB_{it}}{PIB_{it} + PIB_{jt}} \right)^2 - \left(\frac{PIB_{jt}}{PIB_{it} + PIB_{jt}} \right)^2 \right]$$ \hspace{1cm} (9)

It is an index which range between 0 (absolute divergence in partner size) and 0.5 (partners have the same size). The sign of the coefficient of this indicator is undetermined because of contradictory effects which can appear analyzing the value. Indeed, country with the same living standard conditions can have intra industrial trade given that they share a large brand of goods (Linder hypothesis). However, if differences in incomes are highly correlated with factors endowments, trade within industries must be lower between countries which have similar income level. I consider also in the gravity equation, percentage of road paved and the number of telephone line per 1000 inhabitants over the period. Such variables catch the impact of economic infrastructure on exports in WAEMU. These information are from world bank database, WDI (2008).

As far as it concerns institutions quality indicators, I use control of corruption, public services efficiency and rule of law (Jansen and Nordas (2004)) from World Bank database, World Governance Indicators (WGI), 2008. Control of corruption indicator reflects the extent to which public power is exercised for private purposes, including large and small forms of corruption and state capture by elites and private interests. As for public services effectiveness, the indicator captures the perception of service quality, the qualities of public service and the degree of its independence from political pressures, the quality of policy formulation and implementation and also the credibility of the government’s commitment towards these policies. As far as it concerns rule of law indicator, it shows the perception of the extent to which agents have confidence and respect the rules of society and particularly the quality of contract enforcement, property rights, police, courts and the perception of crime and violence. These indicators are scores centered around 0 and the range of variation is from -2.5 to 2.5. A negative score means a worse situation while a positive value indicates a better situation. These variables were selected because they increase the uncertainty of economic activity if they are not controlled. Consequently they increase transaction costs and thus slow down foreign trade expanding. Linear interpolation help us to replace missing value. Graph 2 shows the evolution of these indicators from 1996 to 2006. As we can see, on this graph, all indicators have negative values and they decrease over the period.
This means that, institutions are bad in WAEMU and this situation becomes worse and worse over time. So this situation would have negative impact on WAEMU exports as I describe before. Analyzing the correlation between exports (respectively within member country and with the rest of the world) and these indicators, I get the following results (tables 1 and 2). The correlation coefficient between Intra exports and rule of law is negative and significant at 5% level (−0.21). So the lack of democracy seems not to be an obstacle to expanding exports within WAEMU.
Table 1 - Correlation coefficient between intra exports and institution quality indicators in WAEMU

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th>Control of corruption</th>
<th>Public services effectiveness</th>
<th>Rule of law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control of corruption</td>
<td>-0.0418</td>
<td>1.000</td>
<td>0.7040*</td>
<td>0.6872*</td>
</tr>
<tr>
<td>(0.3004)</td>
<td></td>
<td>(0.73)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Public services</td>
<td>-0.0139</td>
<td>0.7040*</td>
<td>1.000</td>
<td>0.7035*</td>
</tr>
<tr>
<td>effectiveness</td>
<td></td>
<td>(0.73)</td>
<td></td>
<td>(0.000)</td>
</tr>
<tr>
<td>Rule of law</td>
<td>-0.2120*</td>
<td>0.6872*</td>
<td>0.7035*</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: IMF data (DOTS) and World Bank data (WGI), author’s calculations (* significant at 5% level, (P-value))
<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th>Rule of law</th>
<th>Control of corruption</th>
<th>Public service effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule of law</td>
<td>-0,1357*</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control of corruption</td>
<td>-0,0463*</td>
<td>0,6810*</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>(0,000)</td>
<td>(0,000)</td>
<td></td>
<td>(0,000)</td>
<td></td>
</tr>
<tr>
<td>Public services effectiveness</td>
<td>-0,0257</td>
<td>0,7040*</td>
<td>0,6991*</td>
<td>1,00</td>
</tr>
<tr>
<td>(0,0566)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td></td>
</tr>
</tbody>
</table>

Source: IMF data (DOTS) and World Bank data (WGI), author's calculations (* significant at 5% level, (P-value))
On total exports side, (table 2), lack of democracy and more and more corruption work along with expanding global exports from WAEMU to the rest of the world. The correlation coefficient is negative and significant respectively around -0.14 and -0.05. Such institutional environment is expected to discourage exports because it leads to higher transaction costs. And instead it boosts exports. There would indeed be symptoms of natural resources and raw materials curse in explaining WAEMU’s country foreign trade. But is this relationship significant? And at what level such institutions work in favor of expanding exports in WAEMU? Before it is interesting to know what kind of goods WAEMU exports mainly?

As for WAEMU exports goods structure, I analyze it on two steps. First, I consider all kind of product per category exported by WAEMU both intra exports and total export including the rest of the world given by WAEMU economic commission data (2008). For exports within WAEMU so do exports towards the rest of the world, as we can see on the two following graph (graph 3 and graph 4), agricultural products and extractive industry products, both respectively raw materials and naturals resources, are the main exported goods in WAEMU. Does it cover a large brand of products? Is it really different from goods exported from the rest of the world? Let us analyze diversification and concentration indexes for answering to these questions?
Figure 3 – WAEMU’s total exports by products grade from 1996 to 2007.

Source: WAEMU’s economic commission data, 2008.
Figure 4 - Exports within WAEMU by products grade from 1996 to 2007.

Source: WAEMU’s economic commission data, 2008.
So in the second, I look these two indicators, concentration and diversification indexes given by UNCTAD statistics book (2008). These indicators will be used in the gravity equation in order to assess the impact of changes in exports structure on WAEMU’s exports. Concentration index changes between 0 and 1. It indicates that exports are matter of an homogenous brand of products. Over the period, WAEMU’s concentration index moves from 0.09 to 0.36. I notice that WAEMU’s exports are slightly concentrated. In others words, these exports consist of an homogenous brand of raw materials and extractive industry products. Looking at diversification index, it moves between 0 and 1 also. In WAEMU, it fluctuates between 0,43 to 0,64. Thus, WAEMU’s exports diverge strongly from ones of the rest of the world. Is there any significant relationship between these indexes and total exports and intra exports? From table 3, we learn that there is a positive and significant relationship with concentration index although this relationship is negative considering the diversification index as far as it concerns total exports. For intra exports, only a negative and significant relationship with diversification index is pointed out (table 4). Does this structure have an influence on exports in WAEMU?

Table 3 – Correlation coefficient: total exports and structure index

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th>Concentration index</th>
<th>Diversification index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>1,00</td>
<td>0,0406*</td>
<td>1,00</td>
</tr>
<tr>
<td>Concentration index</td>
<td>(0,0026)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>Diversification index</td>
<td>-0,1564*</td>
<td>0,4525*</td>
<td>1,00</td>
</tr>
</tbody>
</table>
| Source: IMF data, DOTS, author's calculations (* significant at 5% level, (P-value))

Table 4 – Correlation coefficient: exports within WAEMU and structure index

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th>Concentration index</th>
<th>Diversification index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td>1,00</td>
<td>0,0727</td>
<td>1,00</td>
</tr>
<tr>
<td>Concentration index</td>
<td>(0,0716)</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>Diversification index</td>
<td>-0,3737*</td>
<td>0,4505*</td>
<td>1,00</td>
</tr>
</tbody>
</table>
| Source: IMF data, DOTS, author's calculations (* significant at 5% level, (P-value))

17
4 Results

Table 5 gives estimation results. Note that both models either for total exports or exports within WAEMU are significant and well specified looking at Wald statistic p-value after estimation. Indeed, this probability equal to 0 for each model. Then, Mills ratio (λ) coefficients are significant and positive. That means there are unobservable variables which have positive influence on exports in WAEMU. The analysis shows the following: Country economic size and development level, have a direct access to the sea and sharing a same frontier, exports structure and institution quality either for WAEMU country member and their partner, have significant influence on exports.

As far as it concerns, country economic size and development level, I show that when the first increases about 1% in WAEMU, this leads to increase exports from WAEMU by 1.57% for total exports and 2.07% for intra exports. But such increase in economic size for trade partner contribute to reduce total exports about 0.64%. This is only 0.06% for intra exports. Economic growth in WAEMU is in favor of expanding exports although an increase in GDP in trade partner economy reduces exports from WAEMU. The same result has been highlighted by Agbodji (2008). So this GDP growth in WAEMU allows country member to export more than before and for the trade partner this growth can lead to reduce their imports from WAEMU. That is why the coefficient of trade partner GDP is negative. In addition when these partners become more developed, they do so and it is the same situation considering WAEMU country member. Indeed an increase about 1% in GDP per capita respectively for WAEMU’s member countries and their trade partner considered in this work, leads to a reduction about respectively 1.11% and 0.15% for total exports. For intra exports the reduction is only notice after an increase in WAEMU’s countries GDP per capita (2.71%). But this increase of 1% in GDP per capita for partners in WAEMU leads to increase for 1.15% WAEMU’s intra exports. The decrease is higher in the case of WAEMU’s member countries than it is for their trade partner. Exports intensification respond positively with GDP growth in WAEMU and negatively with the growth rate GDP per capita.

Distance and having a common frontier have respectively negative and positive significant coefficient. These variables have the expected sign according to the literature on gravity model (Fontagné et al, 2002; Carrère, 2004; Coulibaly, 2007; Agbodji, 2007). For a common frontier,
<table>
<thead>
<tr>
<th>Variables</th>
<th>Total Exports</th>
<th>Exports within WAEMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP (E)</td>
<td>1.57***</td>
<td>2.07***</td>
</tr>
<tr>
<td></td>
<td>(21.10)</td>
<td>(10.35)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>GDP (I)</td>
<td>0.64***</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(26.95)</td>
<td>(0.44)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.066]</td>
</tr>
<tr>
<td>GDP per capita (E)</td>
<td>-1.11***</td>
<td>-2.71***</td>
</tr>
<tr>
<td></td>
<td>(-6.28)</td>
<td>(-5.25)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>GDP per capita (I)</td>
<td>-0.15***</td>
<td>1.15***</td>
</tr>
<tr>
<td></td>
<td>(-5.27)</td>
<td>(2.90)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.004]</td>
</tr>
<tr>
<td>Direct access to the sea</td>
<td>1.03***</td>
<td>1.83***</td>
</tr>
<tr>
<td></td>
<td>(10.94)</td>
<td>(8.53)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Common frontier</td>
<td>0.38***</td>
<td>0.31***</td>
</tr>
<tr>
<td></td>
<td>(5.34)</td>
<td>(2.99)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Creation</td>
<td>0.41***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(6.86)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>-</td>
</tr>
<tr>
<td>Distance</td>
<td>-1.38***</td>
<td>-0.67***</td>
</tr>
<tr>
<td></td>
<td>(-29.42)</td>
<td>(-7.44)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Similarité</td>
<td>-0.30***</td>
<td>0.24***</td>
</tr>
<tr>
<td></td>
<td>(-13.70)</td>
<td>(2.22)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.026]</td>
</tr>
<tr>
<td>Road paved (%) (E)</td>
<td>-0.28***</td>
<td>0.21*</td>
</tr>
<tr>
<td></td>
<td>(-5.24)</td>
<td>(1.77)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.077]</td>
</tr>
<tr>
<td>Road paved (%) (I)</td>
<td>-0.02</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>(-0.57)</td>
<td>(-0.18)</td>
</tr>
<tr>
<td></td>
<td>[0.569]</td>
<td>[0.859]</td>
</tr>
<tr>
<td>Number of telephone for 1000 people (E)</td>
<td>0.50***</td>
<td>0.62***</td>
</tr>
<tr>
<td></td>
<td>(7.39)</td>
<td>(3.88)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of telephone for 1000 people (I)</td>
<td>-0.12***</td>
<td>-0.51***</td>
</tr>
<tr>
<td></td>
<td>(-4.07)</td>
<td>(-3.43)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Concentration index</td>
<td>0.09</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(1.33)</td>
</tr>
<tr>
<td></td>
<td>[0.320]</td>
<td>[0.185]</td>
</tr>
<tr>
<td>Diversification index</td>
<td>-1.69***</td>
<td>-4.014***</td>
</tr>
<tr>
<td></td>
<td>(-4.66)</td>
<td>(-5.22)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
</tbody>
</table>

Note: E = Exporting countries, I = Importing countries, t student and P-value respectively into () and [] with *, ** and *** indicate significant at 10%, 5% and 1% level
<table>
<thead>
<tr>
<th>Variables</th>
<th>Total exports</th>
<th>Exports within WAEMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control of corruption (E)</td>
<td>1.26***</td>
<td>0.86*</td>
</tr>
<tr>
<td></td>
<td>(5.08)</td>
<td>(1.73)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.083]</td>
</tr>
<tr>
<td>Control of corruption (I)</td>
<td>-1.86***</td>
<td>0.92*</td>
</tr>
<tr>
<td></td>
<td>(-8.48)</td>
<td>(1.94)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.053]</td>
</tr>
<tr>
<td>Rule of law (E)</td>
<td>-0.41</td>
<td>-2.78***</td>
</tr>
<tr>
<td></td>
<td>(-1.29)</td>
<td>(-4.45)</td>
</tr>
<tr>
<td></td>
<td>[0.197]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Rule of law (I)</td>
<td>0.80***</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(3.09)</td>
<td>(-0.09)</td>
</tr>
<tr>
<td></td>
<td>[0.002]</td>
<td>[0.929]</td>
</tr>
<tr>
<td>Public services effectiveness (E)</td>
<td>-1.52***</td>
<td>-0.91</td>
</tr>
<tr>
<td></td>
<td>(-5.38)</td>
<td>(-1.56)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.118]</td>
</tr>
<tr>
<td>Public services effectiveness (I)</td>
<td>-0.80***</td>
<td>-1.45***</td>
</tr>
<tr>
<td></td>
<td>(-3.28)</td>
<td>(-2.93)</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Regulation quality (E)</td>
<td>1.64***</td>
<td>-1.59***</td>
</tr>
<tr>
<td></td>
<td>(5.94)</td>
<td>(-3)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.003]</td>
</tr>
<tr>
<td>Regulation quality (I)</td>
<td>1.43***</td>
<td>0.9*</td>
</tr>
<tr>
<td></td>
<td>(8.69)</td>
<td>(1.69)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.092]</td>
</tr>
<tr>
<td>Stability (E)</td>
<td>-0.53***</td>
<td>0.63**</td>
</tr>
<tr>
<td></td>
<td>(-3.46)</td>
<td>(2.03)</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.042]</td>
</tr>
<tr>
<td>Stability (I)</td>
<td>0.77***</td>
<td>0.49*</td>
</tr>
<tr>
<td></td>
<td>(7.43)</td>
<td>(1.83)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.067]</td>
</tr>
<tr>
<td>Lambda (Mills ratio)</td>
<td>3.22***</td>
<td>0.823***</td>
</tr>
<tr>
<td></td>
<td>(22.79)</td>
<td>(3.08)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.002]</td>
</tr>
<tr>
<td>Constant</td>
<td>-33.10***</td>
<td>-32.045***</td>
</tr>
<tr>
<td></td>
<td>(-32.71)</td>
<td>(-9.55)</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3839</td>
<td>541</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-5525.45</td>
<td>-614.328</td>
</tr>
<tr>
<td>Wald χ^2</td>
<td>3917.43</td>
<td>1836.60</td>
</tr>
<tr>
<td>$\text{Prob}>\chi^2$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: E = Exporting countries, I = Importing countries, t student and P-value respectively into () and [] with *, ** and *** indicate significant at 10%, 5% and 1% level.
I show that partners which have a common frontier in the sample, trade 1.46 more than others for total exports and this is about 1.36 more for intra exports. In addition, being so far from a partner works as an obstacle to expanding trade. It reduces exports about 1.38% for 1% of increase in distance for total exports and 0.67% for exports within WAEMU’s countries. Trade creation is significant. WAEMU members export to each other 1.5 more than with another country outside. WAEMU’s countries which have a direct access to the sea export 2.8 more than those whose have not. This situation leads to about 6.23 for exports within WAEMU.

Diversification index has a negative impact on exports. A change about 1 point of this index leads to reduce total exports about 1.69 points and intra exports about 4.01 points. This index impact is higher within WAEMU’s countries than the whole partner together. As I showed before, WAEMU’s export is very different from the rest of the rest of the world exports. Thus this situation works against expanding total exports and intra exports also. It is important to diversify products exported with more industrials goods. Concentration index has a positive and significant impact on exports from WAEMU. Its impact is higher for exports within WAEMU than total exports for an increase about 1 point of this index respectively 0.25 and 0.09.

Economic infrastructures-telephone- have positive impact on total exports and intra exports. An increase about 1 point, improving the number of telephone line per 1000 inhabitants in WAEMU, will increase total exports and intra exports respectively about 0.5% and 0.62%. For the percentage of road paved, an improving about 1% work as an obstacle for total exports (0.28%) although it contributes to increase intra WAEMU exports for 0.21% (Longo et Sekkat 2004, Coulibaly (2007) and Agbodji (2007,2008)).

Improving control of corruption in WAEMU leads to expanding total exports and intra exports. An increase about 1% unit of standard deviation of control of corruption scores, increases total exports 0,47% (Lavallée, 2006) about and intra exports about 0.32%. But improving democracy about 1% in the standard deviation of this score, works as an obstacle for expanding exports form WAEMU only for intra WAEMU exports about 1.19%. It has not impact any on total exports. It is the same situation for public services effectiveness. So improving public services effectiveness for 1% of the standard deviation of this score leads to reduce total exports about 0.67%. It has no significant impact on intra exports.

2. $1.36 = \exp(0.31)$
3. $6.23 = \exp(1.83)$
Conclusion

This analysis seeks to understand how far the natural resources curse works in WAEMU’s foreign trade. Does the preponderance of raw materials part reinforce inequalities, weaken public services and lack of democracy, as well as encourage corruption and slow economic growth? It appears that improving the efficiency of public services and strengthening the rule of law penalize exports from WAEMU. In addition, the strong divergence of products exported by WAEMU towards the rest of the world constitutes a potential obstacle to expanding foreign trade. Unsurprisingly, the level of development remains an major handicap to the growth of foreign trade in the WAEMU. Nevertheless, trade creation is significant in WAEMU and economic size is in favor of expanding WAEMU’s foreign trade. Even if the low level of economic development limit also the intensity of foreign trade. Finally, raw materials and naturals resources curse work on WAEMU’s exports by public services effectiveness and encourage democracy. It is necessary to move up foreign trade by changing exports structure. As WAEMU exports more raw materials and naturals resources, fight against institution deficiency might be worse in expanding foreign trade.
Références

Annexes

Annexe 1A

Figure 5 - Homoscedasticité test results : total exports model

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3839</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>57082.2441</td>
<td>26</td>
<td>2194.3554</td>
<td>F(26, 3812) = 1607.75</td>
</tr>
<tr>
<td>Residual</td>
<td>5202.88584</td>
<td>3812</td>
<td>1.36485725</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>62256.0799</td>
<td>3838</td>
<td>16.2209692</td>
<td>R-squared = 0.9164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.9159</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 1.1683</td>
</tr>
</tbody>
</table>

| residus2 | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|-------|-----------|-----|------|---------------------|
| PIB1 | 6.003719 | .0852204 | 70.45 | 0.000 | 5.836697 | 6.170801 |
| PIB2 | 2.77257 | .0270362 | 102.54 | 0.000 | 2.719599 | 2.825541 |
| PIBT1 | -3.258862 | .2022321 | -16.11 | 0.000 | -3.653356 | -2.863269 |
| PIBT2 | -6.891466 | .2316539 | -21.78 | 0.000 | -7.515965 | -6.274361 |
| maritime | 2.67545 | .107893 | 26.65 | 0.000 | 2.663942 | 2.687009 |
| frontiere | 1.227707 | .0680914 | 15.17 | 0.000 | 1.069034 | 1.386399 |
| creation | 950.099 | .0675757 | 14.03 | 0.000 | 917.955 | 982.2434 |
| Distance | -6.265142 | .0638065 | -116.45 | 0.000 | -6.370622 | -6.159661 |
| Sim | -1.150012 | .0247663 | -46.43 | 0.000 | -1.198569 | -1.101456 |
| RouteExport | -1.362075 | .0689241 | -22.36 | 0.000 | -1.481522 | -1.242628 |
| RouteImpor | -6714623 | .0396663 | -18.16 | 0.000 | -7.439379 | -5.986867 |
| TelephoneE | 2.855902 | .0780378 | 36.61 | 0.000 | 2.702986 | 3.008435 |
| TelephoneI | -2032168 | .0347221 | -5.85 | 0.000 | -2.172526 | -1.25411 |
| IndexC | .3083123 | .1079393 | 4.67 | 0.000 | 0.292188 | 0.715436 |
| IndexD | -5.859405 | .4152607 | -14.11 | 0.000 | -6.67256 | -5.045251 |
| ControlCor | 3.461426 | .2850156 | 12.14 | 0.000 | 3.902628 | 4.020223 |
| ControlCor | -5.626175 | .2512864 | -22.39 | 0.000 | -6.11879 | -5.133561 |
| PrinDroite | -7.264322 | .3659913 | -2.00 | 0.046 | -1.4393 | -0.365486 |
| PrinDroitE | 1.069016 | .2951332 | 3.62 | 0.000 | 0.491119 | 1.648454 |
| EffGouvEx | -7.443456 | .3226774 | -23.05 | 0.000 | -8.076848 | -6.810427 |
| EffGouvInp | -4.290301 | .2797969 | -15.33 | 0.000 | -4.638667 | -3.717153 |
| RegQualEx | 7.37077 | .3174056 | 23.22 | 0.000 | 6.78847 | 7.953069 |
| RegQualImp | 6.45237 | .1893693 | 34.03 | 0.000 | 6.085262 | 6.817811 |
| StabPolEx | -2.647965 | .1749327 | -15.14 | 0.000 | -2.990936 | -2.304995 |
| StabPolImp | 4.362081 | .1182763 | 36.88 | 0.000 | 4.13019 | 4.593972 |
| Lambda1 | 16.38051 | .1617908 | 101.29 | 0.000 | 16.08344 | 16.69757 |
| _cons | -130.0021 | 1.158479 | -112.22 | 0.000 | -132.2734 | -127.7308 |

Source : Calculs de l’auteur.
Annexe 1B

Figure 6 - Homoscedasticité test results: exports within WAEMU model

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1781.38</td>
<td>25</td>
<td>71.4852</td>
<td>F(25, 515) = 234.98</td>
</tr>
<tr>
<td>Residual</td>
<td>1566.72415</td>
<td>515</td>
<td>3.04218281</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1948.1042</td>
<td>540</td>
<td>35.9964892</td>
<td>R-squared = 0.9194</td>
</tr>
</tbody>
</table>

| residusint2 | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------|-------|-----------|-------|------|----------------------|
| PIB1 | 7.23565 | .4645397 | 15.58 | 0.000 | 6.3236292 - 8.14828 |
| PIB2 | 4.129099 | .3224014 | 1.30 | 0.194 | -2.1437461 - 1.052393 |
| PIBT1 | -8.162567 | 1.196226 | -6.82 | 0.000 | -10.510698 - 5.814449 |
| PIBT2 | 2.675037 | .9180061 | 2.81 | 0.005 | .77155123 - 4.378522 |
| maritime | 6.802299 | .4960436 | 13.71 | 0.000 | 5.827711 - 7.776747 |
| frontiere | 1.099726 | .2369794 | 4.64 | 0.000 | .6341606 - 1.565291 |
| Distance | -2.272121 | 2.097715 | -10.83 | 0.000 | -2.684234 - 1.860008 |
| Sim | 1.584648 | .2536338 | 6.25 | 0.000 | 1.0863242 - 2.082971 |
| RouteExpOr-S | -1.152371 | .2712857 | -4.25 | 0.000 | -1.665334 - .619462 |
| RouteImpor-S | -1.5711623 | .234643 | -6.74 | 0.000 | -2.032199 - .1101256 |
| TelephoneE-S | 1.483596 | 3.705406 | 4.00 | 0.000 | .7556386 - 2.211553 |
| TelephoneS-S | -1.009095 | .3475054 | -2.90 | 0.004 | -1.69197 - .6263924 |
| IndexC | 1.867854 | .438511 | 4.26 | 0.000 | 1.006364 - 2.729345 |
| IndexD | -21.86496 | 1.782449 | -12.27 | 0.000 | -25.3662 - 18.36319 |
| ControlCor.. | -4.755505 | 1.14965 | -4.11 | 0.001 | -5.9486 - 1.783038 |
| ControlCor.. | 3.411145 | 1.099637 | 3.10 | 0.002 | 1.250818 - 5.571147 |
| PrimDroIT1-S | -10.35608 | 1.440827 | -7.14 | 0.000 | -13.70458 - 4.587774 |
| PrimDroIT2-S | -9.083958 | 1.35009 | -6.77 | 0.000 | -10.35608 - 4.587774 |
| EffGouvExp-s | -6.475977 | 1.343156 | -4.82 | 0.000 | -9.14716 - 3.387238 |
| EffGouvImp-s | -3.995834 | 1.151039 | -3.51 | 0.000 | -6.693013 - .305325 |
| RegQualExp-s | -4.929475 | 1.23292 | -4.00 | 0.000 | -7.231647 - 2.497303 |
| RegQualImp-s | 2.164805 | 1.23704 | 1.75 | 0.081 | -2.654605 - 4.563571 |
| StabPolExp-s | 0.2672397 | 1.719114 | 0.37 | 0.710 | -1.145413 - 1.680092 |
| StabPolImp-s | 1.65567 | .5285334 | 2.66 | 0.008 | 4.348262 - 2.904514 |
| Lambda2 | 4.87968 | .6194196 | 7.88 | 0.000 | 3.66278 - 6.09658 |
| _cons | -103.3091 | 7.768412 | -13.30 | 0.000 | -118.5708 - 88.04743 |

Source : Calculs de l’auteur.