Does complexity explain the structure of commodity trade?

Asier Minondo (Deusto Business School)

Francisco Requena (Universidad de Valencia)

July 2011

Abstract

This paper analyzes whether complexity, measured by the number of skilled tasks that are performed simultaneously in production, explains countries' commodity trade structure. We modify Romalis (2004) model to incorporate differences in complexity across commodities together with differences in average skills across countries and monopolistic competition. Our model predicts that the share of developed countries in world trade increases with products' complexity. The empirical tests confirm this prediction. Moreover, complexity seems to provide a better explanation of countries' commodity trade structure than the one offered only by skill intensity.

JEL Codes: F11, F12, F14

Keywords: complexity, skill-intensity, factor proportions, trade structure, specialization.

Acknowledgements

We thank Patricia Canto, Bernardo Esuain and Mikel Navarro for their valuable suggestions. We acknowledge financial support from Spanish Ministry of Science and Innovation (ECO2010-21643/ECON; project ECO 2008-04059/ECON) and Generalitat Valenciana (project Prometeo/2009/098).
1. Introduction

Relative differences in skills are a fundamental explanation of the trade pattern between developed and developing countries. According to the factor proportions theory, developed countries should have a higher share in the production and trade of goods and services that use more intensively skilled workers. In contrast, developing countries should capture a larger share in the production and trade of goods and services that use more unskilled workers. However, during the last years, in parallel with the spread of information and communication technologies and the fragmentation of the value added chain, we have observed an increase in developing countries' share in some skill-intensive services' exports, such as medical diagnoses or accounting, and in some skill-intensive products' exports, such as software programs.

The rise of exports in some skill-intensive activities from developing countries points out that skill-intensity might not be a sufficient condition to explain the trade pattern between developed and developing countries. In this paper, we argue that complexity, defined as the number of skilled tasks that are performed simultaneously in production, offers a complementary description of the structure of services and goods trade between developed and developing countries. We contend that developed countries have comparative advantage in goods that require the simultaneous participation of a large number of skilled workers performing different tasks, whereas developing countries have comparative advantage in goods that require the combination of a small number of skilled workers. The advantage of developed countries in complex goods stems from the fact that small differences in workers' skills are magnified when a large number of skilled workers performing different tasks are combined in production. As average skills are higher in developed than in developing countries, productivity differences between the former and the latter will increase with the complexity of goods.

An example can illustrate our argument. A Formula 1 racing team requires the simultaneous participation of a large number of skilled workers that perform different tasks. Some engineers are in charge of the mechanic section of the car, others specialize in the aerodynamic section, and others identify the best strategy for each race. In addition to engineers, a F1 team needs a group of highly skilled drivers who pilot the car during races and performance tests. Finally, the F1 team also requires highly skilled managers to run, among others, the logistics of the team and branding activities. A marginally lower performance
relative to other F1 teams in any of these activities will seriously reduce the chances of winning a race. As the average level of skills are larger in developed than in developing countries, F1 racing teams will locate in developed countries. In contrast, the writing of a software program requires the participation of a smaller number of skilled workers: highly-skilled programmers and managers to run the commercial activities of the firm. As the number of different skilled tasks that should be performed becomes small, minor differences in the skills level do not lead to significant differences in performance between developed and developing countries. Hence, the production of these products is located in developing countries.

More formally stated, two recent papers provide explanations why developed countries may have comparative advantage in complex products. Hidalgo and Hausmann (2009) argue that the set of capabilities, or intangible skills, that are available in developed countries is much larger than in developing countries. If complex products require the combination of a large number of capabilities, it will be more probable to find the whole set of the required capabilities in developed than in developing countries. However, developing countries may still have comparative advantage in those activities that require a small range of skill-intensive capabilities. On its hand, Costinot (2009) shows that higher skills per worker in conjunction with better institutions grant developed countries an advantage in complex goods. In his model, workers have to be trained to perform a task, so there are gains from task-specialization. These gains are higher the larger the number of tasks involved in manufacturing a good (complexity). However, a larger number of workers participating in the production process also lead to higher contract-enforcement costs. In developed countries advanced institutions allow a better enforcement of contracts, and higher human capital translates in a larger number of workers in terms of efficiency units. Hence, developed countries can devote a larger number of efficiency units to the production of each good. This advantage will be especially significant in complex goods, where gains from specialization are larger.

Complexity can also explain trade specialization within products. Schott (2004) shows that differences in trade pattern between developed and developing countries might be better explained by vertical specialization within products than specialization across products. In our framework, developed countries will have comparative advantage in higher-quality varieties of a product, as long as more complex production processes are required to obtain those superior varieties. However, if superior varieties do not stem from differences in complexity,
quality will not lead developed countries to specialize in superior segments and developing countries in inferior segments. For example, due to properties of the wood, oak tables are more expensive than pine tables. However, the complexity of the production process is similar for both types of wood and, hence, differences in quality should not lead countries to specialize across segments. In contrast, in the cosmetics industry a low quality make-up remover will surely involve a less complex production process than the latest anti-aging cream. In addition to the chemical engineers, the latter product will require the participation of researchers in biology, cream-container designers, high quality photographers and media experts.

To formalize these ideas, we develop a model that incorporates differences in average skills across countries, differences in complexity across commodities and monopolistic competition. The model predicts that developed countries capture larger shares of production and trade in commodities as they become more complex. This prediction receives ample support in the empirical analysis. Moreover, we show that complexity provides a better explanation of countries' commodity trade structure than the one offered only by skill intensity.

This paper is related to several strands of the literature. First it is linked to the literature that worked on the concept of complexity. In particular, we draw the concept of complexity from Kremer (1993) and place it in a general equilibrium two-country model. Kremer defines complexity as the number of activities that might go wrong during the production process and affect the value of the product as a whole. In his model there are differences in skills across workers, where skills are defined as the probability a worker will successfully complete a task. One prediction of the model is that skilled workers will specialize in more complex goods. As explained before, Costinot (2009) also defines complexity as the number of tasks that are required to produce a good. However, in his model these tasks can be performed by a worker or by different workers. If a good involves a larger number of tasks the worker should devote more time to training than in a good that involves a lower number of tasks. Hence, in his empirical analysis, complexity is proxied by the average training of the workers that participate in production. In our model, complexity does not stem from learning costs but from the simultaneous participation of a large number of skilled workers performing different tasks. In that sense, our definition of the concept of complexity is closer to Hidalgo and Hausmann (2009), which define product complexity as the number of capabilities required to produce a good. In their case, complexity is estimated by a method that iterates the number of products that a country exports (diversity) and the number of countries that export a product.
Complexity is also linked with the concept of “new industry” developed in the innovation literature (Baró and Villafranca, 2009), which captures the fact that the competitive success of manufacturing firms in developed countries depends increasingly on the service activities that they develop or incorporate. The incorporation of these new activities allows firms in developed countries to reach a level of complexity that is very difficult to replicate in developing countries.

This paper is also related to recent studies that examine the pattern of international trade between developed and developing countries, and particularly, to Romalis (2004). This author develops a model to analyze how differences in factor proportions influence the commodity structure of trade. His model predicts that countries relatively well endowed with skilled labor will have a larger share in the world production and trade of skill-intensive goods. As predicted by the model, he shows that the share of developed countries in US imports is increasing in the skill-intensity of goods. Our paper complements Romalis’ analysis showing that complexity also plays a substantial role in determining the pattern of trade between developed and developing countries. As mentioned above, other studies, such as Schott (2004), have analyzed the predictions of the factor proportion theory for vertical specialization, finding that developed countries specialize in high-quality products whereas developing countries specialize in low-quality products. Our paper is also related with recent studies, such as Morrow (2010) and Chor (2010), that analyze the role of factor proportions theory and other forces, such as productivity and institutional differences, in explaining the commodity trade pattern in samples that combine develop and developing countries.

Finally this paper is also related to recent literature where trade is described as an exchange of tasks, rather than an exchange of goods. Grossman and Rossi-Hansberg (2008) develop a model to explain which tasks are offshore and which tasks are performed in-house. They also analyze the consequences on reducing the costs of offshoring on domestic factor rewards. Other authors have analyzed which tasks are more likely to remain in developed countries, and which tasks have a higher risk of being offshore to developing countries (Autor et al., 2003; Blinder, 2009; Autor, 2010). These authors show that routine and impersonal tasks are easier to offshore to developing countries. In this paper, we do not focus on the tradability of tasks, but rather on how the number of tasks that participate in production may be relevant to account for differences in the structure of trade across countries.
The rest of the paper is organized as follows. The next section develops the model. Section 3 presents the empirical tests and comments the results. Section 4 concludes.

2. The Model

We modify the model developed in Romalis (2004) to get a prediction on the relationship between a country's average skills and its share in the world production of complex goods. Romalis develops a model based on the factor proportion theory, where countries differ in their relative endowments of skilled and unskilled workers, and products differ in their skill-intensity. The model predicts that countries relatively well endowed in skilled workers should capture a larger share in the world production and trade of skill-intensive goods. In contrast, in our model differences across countries do not stem from differences in factor endowments but from workers' productivity. In particular, we assume that northern countries' workers are more productive than southern countries' workers. This higher productivity is explained by the higher level of human capital in the North than in the South. On the other hand, in our model products are not differentiated by skill-intensity but by their complexity level, defined as the number of workers performing different tasks that participate simultaneously in the production process. Following Kremer (1993), workers' higher productivity is reflected in a higher probability of performing their task correctly. The North will be more efficient than the South in the production of all products. However, northern countries advantage increases with the complexity of goods. Hence, northern countries develop comparative advantage in complex products and southern countries develop comparative advantage in less complex products. Substituting the factor proportion source of comparative advantage by a technological source of comparative advantage, and following the analytical steps taken in Romalis, we can derive a prediction on the relationship between a country's average skills and its share in the world production and trade of complex goods.

To reach this prediction, we assume that there are M countries in the North and M countries in the South. As explained above, there is only one factor of production, labor. The differences between northern and southern countries stem from workers' average skills, which are larger in the former than in the latter. We also assume that average skills are the same for each worker within a country. There is a continuum of industries z in the interval $[1, n]$. The index z ranks industries by their complexity level, defined as the number of workers performing
different tasks that participate simultaneously in production. Industries with a higher \(z \) are more complex.

Preferences are identical for all consumers in all countries. At the industry level, consumers have Cobb-Douglas preferences, so a fixed amount of income \((b(Y))\) is spent in each industry \(z \). Within each industry, firms are able to differentiate their products without any cost, and consumers enhance their utility consuming a larger set of varieties. Based on these assumptions, the demand for variety \(i \) industry \(z \) depends on the price of variety \(i \) relative to a price index, and the expenditure in industry \(z \):

\[
q_D(z, i) = \frac{\hat{p}(z, i)^{-\sigma}}{\int_{i \in I(z)} \hat{p}(z, i)^{-\sigma} \, di} b(Y) \quad (1)
\]

where \(I(z) \) denotes the set of varieties in industry \(z \) and \(\sigma \) the elasticity of substitution between varieties, which is greater than one. \(\hat{p}(z, i) \) denotes the price of variety \(i \) paid by consumers. For varieties produced in other countries this price may include transport costs, which have the iceberg form, where \(\tau \) units should be shipped for 1 unit to arrive \((\tau \geq 1)\).

It is convenient to define the ideal price index \(G(z) \):

\[
G(Z) = \left[\int_{i \in I(z)} \hat{p}(z, i)^{1-\sigma} \, di \right]^{\frac{1}{1-\sigma}} \quad (2)
\]

The varieties of industry \(z \) consumed in a northern country can be produced domestically, in other northern countries or in southern countries. If we mark southern varieties with an asterisk and drop the industry notation, the ideal price index \(G \) can be expressed as:

\[
G = [np^{1-\sigma} + (M - 1)n(p\tau)^{1-\sigma} + Mn^*(p^*\tau)^{1-\sigma}]^{\frac{1}{1-\sigma}} \quad (3)
\]

where \(p \) is the factory gate price set by a northern firm and \(n \) the number of varieties. The revenue of a typical northern firm be expressed as:

\[
pq^* = bY \left(\frac{p}{G} \right)^{1-\sigma} + (M - 1)bY \left(\frac{p\tau}{G} \right)^{1-\sigma} + MbY \left(\frac{p^*\tau}{G} \right)^{1-\sigma} \quad (4)
\]

The supply side of the model is inspired in the Kremer (1993) O-ring production function. Each variety requires the combination of different tasks. We assume that each worker
performs only one task and each task only requires one worker. Varieties belonging to different industries differ in the number of tasks required to manufacture them: varieties belonging to more complex industries require more tasks than varieties belonging to less complex industries. Each worker performs a task with a probability γ to perform it correctly. For example, $\gamma = 1$ means that the worker always performs the task correctly. As all tasks are needed to produce the good, if $\gamma = 0$ the production process stops and output equals zero. As northern workers have more human capital than southern workers their γ is larger. For simplicity, we assume that all tasks are subject to failure.

If firms are risk-neutral, production of variety i in industry z can be expressed as,

$$q^s(z, i) = \frac{L_z}{z} \gamma^z, \text{where } L_z \geq z \text{ and } L_z \text{ is a multiple of } z$$ \hspace{1cm} (5)

where L_z represents the number of workers that participate in the production of variety i in industry z. As all tasks should be performed for the product to have full value, the product of γ represents the percentage of occasions where all workers involved in production perform their task correctly. The index z, which measures the level of complexity, also denotes the number of workers that participate simultaneously in the production process.

If production involves a fixed cost α, total costs can be expressed as

$$TC(q^s(z, i)) = \alpha + \left(\frac{q^s(z, i)z}{\gamma^z} \right)w$$ \hspace{1cm} (6)

where w denotes the wage of workers in northern countries. As there is monopolistic competition, firms maximize their profits establishing a constant mark-up over marginal costs.

$$p(z) = \frac{\sigma Zw}{\sigma - 1 \gamma^z}$$ \hspace{1cm} (7)

Based on equation (7), we can express the relative price of industry's z variety i in the North as:

$$\bar{p}(z) = \frac{p(z)}{p^*(z)} = \frac{w \gamma^{*z}}{w^* \gamma^z}$$ \hspace{1cm} (8)
Note that as $y^z < y^+$ the relative price in the North is decreasing in z ($\hat{p}' < 0$): the higher the complexity of the good the lower the relative price of northern varieties.

As explained in Romalis (2004), using equations (3) and (4), and their analogues for the South, it is possible to solve for partial equilibrium in industry z. As long as there is no complete specialization, these solutions lead to an equation that establishes a link between the share of northern firms in z-industry's world revenues (v) and the relative price of northern goods:

$$v = \frac{Y}{W} \left[-p^{-\sigma} \tau^{1-\sigma} MF \left(\frac{Y^*}{Y} + 1 \right) + \tau^{2-2\sigma} M^2 \frac{Y^*}{Y} + F^2 \right] \frac{\tau^{1-\sigma} MF + \tau^{2-2\sigma} M^2 + F^2}{-\left(p^{-\sigma} + \hat{p}^{-\sigma} \right) \tau^{1-\sigma} MF + \tau^{2-2\sigma} M^2 + F^2}$$

(9)

where W is total world income ($W = M(Y+Y*)$) and F is the quantity a northern firm sells in all northern markets divided by its domestic sales ($F = 1 + (M-1)\tau^{1-\sigma}$).

Equation (9) closes the relationship between a higher skill-level and a larger share in the production and trade of complex goods. Northern workers have higher skills than southern workers. As higher skills raise the probability of completing a task correctly, northern countries are more productive than southern countries in all products. However, because tasks should be performed simultaneously, the advantage of northern countries will be higher in those products that require a large number of tasks. Hence, given a relative wage, the price of varieties in North relative to the South will decrease with the complexity of goods. As countries have the same preferences and there is full employment, northern countries will specialize in more complex products and, hence, will capture a larger share of the world revenue and trade of these products.

3. Testing the model

As Romalis (2004) points out, the predictions of the theoretical framework explained above are particularly sharp with respect to trade. As explained above, as consumers in all countries have the same preferences, and complex goods are relatively cheaper in northern countries, the share of northern countries in another country's imports should increase with the complexity of goods. To present this idea formally, we calculate the share of a northern country's firms in another northern country's total imports of commodity z:

9
\[x = \frac{nbY \left(\frac{p_T}{G} \right)^{1-\sigma}}{(M - 1)nbY \left(\frac{p_T}{G} \right)^{1-\sigma} + Mn^*bY \left(\frac{p^*_T}{G} \right)^{1-\sigma}} \quad (10) \]

Rearranging,

\[x = \frac{1}{(M - 1) + Mn^* \frac{n^*}{n} \left(\frac{p^*_T}{G} \right)^{1-\sigma}} \quad (11) \]

Equation (11) establishes a relationship between the share in imports and the relative price. By equation (8) the relative price of northern firms decreases with the level of complexity. Hence, we expect a positive relationship between a northern country's share in imports and commodity's complexity.

The regression equation to test this prediction can be expressed as

\[x_{ijz} = \beta_0 + \beta_1 z + \epsilon \quad (12) \]

where \(x_{ijz} \) is the share of northern country \(i \) in northern country's \(j \) total imports of commodity \(z \). The term \(z \) also denotes the complexity level, defined as the number of different tasks that are performed in production.

To estimate this equation, we need first an indicator of the complexity of goods. We get this indicator from the Occupational Employment Statistics (OES) survey of the U.S. Bureau of Labor Statistics (www.bls.gov/oes). The OES uses a sample of 1.2 million establishments that operate in manufacturing and services to estimate how workers are distributed across occupations. The OES follows the Standard Occupational Classification (SOC), which distinguishes 801 different occupations. We consider that each occupation corresponds to a different task. We also assume that only skilled tasks are subject to failure. Hence, we measure complexity by the number of skilled tasks required to produce a good. We consider as skilled occupations those included between SOC category 11 and SOC category 29: management and other occupations that involve an intensive use of scientific and technical knowledge. At the end of this section, we use alternative complexity measures to test the robustness of the empirical results. Following the assumptions of the model, we consider that all countries have access to the same technology.
To make our estimations comparable to Romalis (2004), we take United States as the reference northern country; the rest of northern countries are identified as those with a GDP per capita equal or above 50 per cent of the US GDP per capita. Detailed data on US imports, in the HS 6-digit nomenclature, is obtained from UN Comtrade database. To transform these data to the NAICS classification followed by OES, we use Pierce and Schott (2009) correspondence tables. To stay as close as possible to the assumptions of the model, we remove from the sample those goods where the availability of natural resources plays a major role in determining comparative advantage.\(^1\) The analysis is performed using data for the years 2002 and 2007.

In the first empirical test, we aggregate US imports from all other northern countries for each commodity \(z\), and analyzes whether there is a positive relationship between the share in imports and goods' complexity. Figure 1 presents the relationship between products' complexity and the share of northern countries in US total imports for the year 2007. As shown in the figure, there is a strong positive relationship between both variables: the share of northern countries is larger the higher the complexity of the good. We also observe that there is a large variation in complexity across industries. The lowest complexity level is found in NAICS code industry 3161, Leather and hide tanning and finishing, where only three skill tasks are performed. In contrast, the industry with a larger number of skilled tasks (101) is NAICS code 3145, Navigational, measuring, electromedical and other instruments manufacturing.\(^2\)

In Figure 2, we analyze the relationship between the share of northern countries in US exports and skill-intensity, measured as the share of non-production workers in total employment.\(^3\) As predicted by the factor proportions theory, the share of northern countries rises with products' skill-intensity. We also observe that there is a large variation in skill-intensity across industries. The lowest skill-intensity is found in Fiber, yarn and thread mills (code 3131), where the share of nonproduction workers is 10%; the highest skill level is found in Communications equipment manufacturing, where the share of nonproduction workers is above 60%.\(^4\) Finally, Figure 3 shows the relationship between complexity and skill-intensity.

\(^{1}\) In addition to agricultural and mineral raw materials, we also exclude from the sample food and beverages, wood products and non-metallic minerals.

\(^{2}\) The average complexity is 43 and the standard deviation 21.

\(^{3}\) Data on the share of non-production workers is obtained from the 2007 Economic Census.

\(^{4}\) The average share of non-production workers is 29% and the standard deviation 11%.
Figure 1. Share of northern countries in US imports and products' complexity, 2007

Figure 2. Share of northern countries in US imports and products' skill-intensity, 2007
We can see that there is a positive relationship between both variables; however, we also observe that there are substantial differences in skill-intensity for a given complexity level.

To test the role of complexity and skill-intensity in explaining countries’ commodity trade pattern, we estimate equation (12) in three alternative ways. First, import shares are regressed on products' complexity; second, import shares are regressed on skill-intensity; finally, we include both complexity and skill-intensity as independent variables in the regression. To perform the econometric analyses we pool observations for the years 2002 and 2007. In Columns (1) to (3) we estimate the model with all manufactures, and in Columns (4) to (6) we with narrow manufactures, removing from the sample those industries where natural resources may also play a role in determining comparative advantage. As shown in Table 1-Column 1, the complexity coefficient is positive and statistically significant. We can see, as well, that the coefficient for skill-intensity is positive and statistically significant. This result is in line with that obtained by Romalis (1994: Table 8-Two factors), although the size of our coefficient is almost half of that obtained by Romalis: 0.93. Finally, when both independent variables are introduced in the regression (Column 3), the coefficient for complexity remains positive and statistically significant; however, the coefficient for skill-intensity, although

5 Results are not altered when we perform the analysis independently for each year.

6 Romalis estimates the model using imports data for year 1998 and skill-intensity data for year 1992, and with a sample of countries slightly different to that use in our study.
positive, becomes statistically not significant. This result seems to point out that complexity provides a better description of countries' commodity trade structure than the one offered only by skill intensity. We can see, as well, that results are not altered when we estimate the model with the sample of narrowly defined manufactures (Columns 4 to 6); moreover, there is an improvement in the fit of the model. As narrowly defined manufactures are more suitable to test the predictions of our model, we will only report the results of the empirical analyses for this sample.7

Table 1. Regression results on the relationship between the share of northern countries in US imports, complexity and skill-intensity (year 2002 and 2007)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>0.004***</td>
<td>0.004***</td>
<td>0.005***</td>
<td>0.005***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.005)***</td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill-intensity</td>
<td>0.502***</td>
<td>0.066</td>
<td>0.507***</td>
<td>-0.064</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.187)</td>
<td>(0.218)</td>
<td>(0.208)</td>
<td>(0.241)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.17</td>
<td>0.17</td>
<td>0.21</td>
<td>0.10</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>Narrow</td>
<td>Narrow</td>
<td>Narrow</td>
</tr>
<tr>
<td>Observations</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>132</td>
<td>132</td>
<td>132</td>
</tr>
</tbody>
</table>

Note: Regressions include year-specific dummy variables (not reported). Robust standard errors in parentheses. ***: statistically significant at 1% and 5% respectively.

To test the robustness of our benchmark results, we perform three sets of sensitivity analyses. The first set uses alternative indicators to proxy commodities' complexity level. In the second set, we perform additional analyses on the relationship between commodities complexity level and countries participation in trade. Finally, in the third set, we run again all estimations using another country, Germany, as the reference northern country. To start with the first sensitivity analyses set, we should remember that in the benchmark analysis the product complexity measure is built on the assumption that mistakes can only happen in skilled tasks; we also

7 Results for the whole sample can be requested from the authors. Results are
assume that all skill tasks have the same probability in committing mistakes. In the first alternative measure we assume that all tasks can commit mistakes; however, we consider that the likelihood of committing mistakes in each task, and the impact of those mistakes in the product's final value, is related with the difficulty of the problems that have to be resolved in each task. To gauge the difficulties faced by each occupation, we turn to the O*NET database and draw information on how important the solving of complex problems is for each occupation. We assume that the higher the importance of solving complex problems the higher the probability of committing mistakes if the worker does not have a high enough human capital level. To calculate the new complexity measure we add-up all occupations in each industry, weighting each task by the importance of solving complex problems in that task. As shown in Table 2 - Columns 1.1. and 1.2, the complexity measure is positive and statistically significant. The skill-intensity measure is positive, but remains statistically not significant. Another way of measuring the likelihood of committing mistakes in each task and the importance of those mistakes in the product's final value is to use the average wage paid in each task. The assumption is that those tasks that are critical to keep the value of a product should command a higher wage. The OES database provides data on the average annual wage for each occupation and industry. We calculate a second alternative complexity measure as the sum of all occupations weighted by their wage. As shown, in Table 2, Columns 2.1 and 2.2, results are not altered.

As a final alternative measure, we draw on the product complexity index proposed by Hidalgo and Hausmann (2009). These authors create a bipartite network of countries and products. Linking these two networks, they are able to extract information on the properties of both countries and products. They start defining the basic-degree of relationship for countries: diversification, defined as the number of products a country exports with comparative advantage. Analytically,

\[k_{c,0} = \sum_{p=1}^{N_P} M_{cp} \quad (13) \]

where \(M_{cp} \) takes the value of 1 if country \(c \) has revealed comparative advantage in product \(p \) and zero otherwise. On its hand, the symmetric basic degree relationship for products is

\[k_{p,0} = \sum_{c=1}^{N_C} M_{cp} \quad (14) \]

\[k_{c, p} = \min\{k_{c,0}, k_{p,0}\} \quad (15) \]

where \(M_{cp} \) takes the value of 1 if country \(c \) has revealed comparative advantage in product \(p \) and zero otherwise. On its hand, the symmetric basic degree relationship for products is

\[k_{p, c} = \min\{k_{c,0}, k_{p,0}\} \quad (16) \]

8 Costinot et al. (2011) also combine the O*NET and the OES databases to calculate a measure of routineness at the industry level.
ubiquity, defined as the number of countries that export a product with comparative advantage. Analytically,

\[k_{p,0} = \sum_{c=1}^{N_c} M_{cp} \]

(14)

According to Hidalgo and Hausmann, a product ubiquity is inversely correlated with its complexity level: if few countries are able to export a good, it means that few countries have the whole set of capabilities that are required to manufacture the good. Although ubiquity gives a first proxy for the complexity of a product, a more precise metric is obtained when higher degree relationships are calculated. This methodology, denominated the method of reflections, consists of iteratively calculating the average value of previous-level properties of a node's neighbors. Higher degree relationships for products are calculated as:

\[k_{p,n} = \frac{1}{k_{p,0}} \sum_{c=1}^{N_c} M_{cp} k_{c,n-1} \]

(15)

For example, the first degree of interaction for products, \(k_{p,1} \), denotes the average diversification of countries that export the product. As we increase the degree of the relationship it is more difficult to interpret the meaning of the variable. In any case, the even degree relationships (\(k_{p,2}, k_{p,4}, k_{p,6}, \ldots \)) can be considered as generalized measures of ubiquity, and odd degree relationships (\(k_{p,1}, k_{p,3}, k_{p,4} \)) as generalized measures of diversification of countries' exporting that product. Using data from Comtrade, we calculate generalized product complexity indexes with a sample of 138 countries for the year 2002 and 2007. For the econometric estimations we will use the inverse of the ubiquity measure calculated at the 4th iteration.\(^9\) One of the advantages of this complexity measure is that now we have a larger sample of industries (576) compared to the complexity measures calculated with the OES and the O*NET databases (132).

As shown in Table 1 - Column 3.1, the new complexity coefficient is positive and statistically significant: northern countries have a higher share of US imports the larger the complexity of the product. The skill-intensity coefficient is also positive and statistically significant (Column 3.2.). When we combine both measures, we find now both the complexity and the skill-intensity coefficients are positive and statistically significant. This result points out that

\(^9\) Results are not when the whole sample of manufactures is used. Results can be requested from the authors.
Table 2. Alternative complexity measures (year 2002 and 2007)

<table>
<thead>
<tr>
<th></th>
<th>Occupations weighted by complex problem solving skills</th>
<th>Occupations weighted by wage</th>
<th>Hidalgo-Hausmann complexity indexes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.2)</td>
<td>(2.1)</td>
</tr>
<tr>
<td>Complexity</td>
<td>0.253***</td>
<td>0.234***</td>
<td>0.250***</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.049)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Skill-intensity</td>
<td></td>
<td>0.152</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.207)</td>
<td>(0.208)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Observations</td>
<td>132</td>
<td>132</td>
<td>132</td>
</tr>
</tbody>
</table>

Note: Complexity measures in column (1) and Column (2) are natural logs. Regressions include year-specific dummy variables (not reported). Robust standard errors in parentheses. ***, **: statistically significant at 1% and 5% respectively.

both complexity and skill-intensity play a role in explaining countries' commodity trade pattern.

In the second set of sensitivity analyses, we use an alternative procedure to test the relationship between countries participation in trade and complexity of products. In particular, to ensure that benchmark results are not driven by some large trading partners, we estimate equation (12) for each northern and southern country included in the sample. Then, we draw the relationship between the estimated coefficients and the average skills of workers. The assumption is that the coefficient for complexity estimated in the first stage should be positive for those countries where human capital is high; in contrast the coefficient for complexity should be negative for those countries where human capital is low. We proxy workers' human capital using average years of schooling of the population with 25 years of more (from Barro and Lee, 2010). To make the coefficients comparable across countries, the dependent variable (share of country i in US imports of commodity z), is divided by the average share of country i in US imports across industries. As shown in Figure 4, there is a positive correlation between the estimated coefficients for complexity and countries' average skills. To confirm
this positive relationship, complexity coefficients are regressed on countries' average skills. As shown in Table 3, average skills explain the differences in complexity coefficients across countries. We observe, as well, that average skills explain the differences in skill-intensity coefficients across countries.

Table 3. Regression results on the relationship between estimated coefficients and average skills per worker (years 2002 and 2007).

<table>
<thead>
<tr>
<th></th>
<th>Complexity coefficients</th>
<th>Skill-intensity coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average skills per worker</td>
<td>0.003 (0.001)**</td>
<td>0.428 (0.090)**</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.035 (0.005)**</td>
<td>-5.065 (0.708)**</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td>230</td>
</tr>
</tbody>
</table>

Note: Weighted least squares, where weights are the number of exported products by each country to the US. Robust standard errors in parentheses. ***: statistically significant at 1%.

10 Following Romalis (2004), we use weighted least squares to control for higher heteroskedasticity in countries with less diversified exports.
Finally, in the third set of sensitivity analysis, we re-run all estimations using Germany, the second largest developed country importer, as the reference northern country. As shown in Table 4, there are no changes in results.

4. Conclusions

This paper argues that products' skill-intensity is no longer a sufficient condition to explain the differences in comparative advantage between developed and developing countries. The spread of new information and communication technologies and the fragmentation of the value-added chain, have allowed some developing countries to produce some skill-intensive products and to provide some skill-intensive services. In this new scenario, product complexity, along with skill-intensity, plays a role in explaining countries' trade pattern. We argue that developed countries have comparative advantage in activities that demand the coordination of a large number of skilled workers performing different tasks. This advantage stems from the fact that small differences in the skill-level are magnified when a large number of skilled activities should be combined. Another explanation may lie in the fact that developing countries only have skilled workers in some specific activities (e.g. software programming), whereas developed countries have skilled workers in a more diversify set of activities and, hence, are more efficient in the production of complex goods.

To formalize this idea we develop a model that incorporates differences in average skills across countries and differences in complexity across commodities. The model predicts that the share of developed countries in world production increases with the complexity of goods. The empirical analyses provide ample support for this prediction. Moreover, we find that complexity complements the explanation provided by skill-intensity on country's commodity trade structure. Our analysis points out that both technological differences, captured by products' complexity, and differences in skills' endowment, are important to explain countries' commodities trade pattern.
Table 4. Regression results with Germany as the reference northern country (years 2002 and 2007)

<table>
<thead>
<tr>
<th></th>
<th>Benchmark</th>
<th>Occupations weighted by complex-problem solving</th>
<th>Occupations weighted by wage</th>
<th>Hidalgo-Hausmann complexity indexes</th>
<th>Country-level coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>(1.1)</td>
<td>(1.2)</td>
<td>(1.3)</td>
<td>(2.1)</td>
<td>(2.2)</td>
</tr>
<tr>
<td></td>
<td>0.004***</td>
<td>0.003***</td>
<td>0.178***</td>
<td>0.154***</td>
<td>0.176***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.031)</td>
<td>(0.035)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Skill-level</td>
<td>0.421***</td>
<td>0.030</td>
<td>0.186</td>
<td>0.154</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.182)</td>
<td>(0.158)</td>
<td>(0.159)</td>
<td>(0.158)</td>
</tr>
<tr>
<td>Average skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.23</td>
<td>0.14</td>
<td>0.23</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>Observations</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Model</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
<td>OLS</td>
</tr>
</tbody>
</table>

Note: Complexity measures in column (1) and Column (2) are natural logs. All regressions, except (4.1) and (4.2) include year-specific dummy variables (not reported). Robust standard errors in parentheses. ***: statistically significant at 1%.
References

